FINAL Site Inspection Report Fort William Henry Harrison Helena, Montana

Perfluorooctanesulfonic Acid (PFOS) and Perfluorooctanoic Acid (PFOA) Impacted Sites ARNG Installations, Nationwide

August 2021

Prepared for:

UNCLASSIFIED

THIS PAGE INTENTIONALLY BLANK

AECOM

Table of Contents

Exec	utive Summary	1	1				
1.	Introduction.		1-1				
	1.1 Project	Authorization	1-1				
	1.2 SI Purpo	ose	1-1				
2.	Site Backgro	Site Background					
	2.1 Facility	Location and Description	2-1				
	•	Environmental Setting					
		ieology					
		ydrogeology					
		ydrology					
		limate					
		urrent and Future Land Use					
		of AFFF Use					
	•	Water Sampling					
3.	-	Areas of Interest					
	•						
		lack-Tailed Prairie Dog Relocation					
		ITARNG 1049th Engineer Detachment (Building 1010)					
		It. Defensa Avenue Drainage Ditch					
		ITARNG 1049th Firefighting Training Area 1 and 3					
		xcavated Soil from Mt. Defensa Avenue Drainage Ditch					
		ormer Weasel Barn					
		ITARNG 1049th Engineer Detachment (Building M1)					
		ITARNG 1049th Firefighting Training Area 4					
		lanned Fire Structure					
		urial Trench					
		ITARNG 1049th Firefighting Training Area 2					
4.		Quality Objectives					
	•	n Statement					
		f the Study					
		tion Inputs					
		oundaries					
	•	al Approach					
		ability Assessment					
		recision					
		ccuracy					
		epresentativeness					
		omparability					
		ompleteness					
		ensitivity					
5.		on Activities					
	-	estigation Activities					
		echnical Project Planning					
		tility Clearance					

	5.1.3 Source Water and PFAS Sampling Equipment Acceptability	5-2						
	5.2 Soil Borings and Soil Sampling	5-3						
	5.3 Permanent Well Installation and Groundwater Sampling	5-3						
	5.4 Groundwater Sampling from Existing Wells	5-4						
	5.5 Synoptic Water Level Measurements	5-4						
	5.6 Surveying	5-4						
	5.7 Investigation Derived Waste	5-5						
	5.8 Laboratory Analytical Methods	5-5						
	5.9 Deviations from SI QAPP Addendum	5-5						
6.	Site Inspection Results	6-1						
	6.1 Screening Levels	6-1						
	6.2 Soil Physicochemical Analyses	6-1						
	6.3 AOI 1							
	6.3.1 AOI 1 Soil Analytical Results	6-2						
	6.3.2 AOI 1 Groundwater Analytical Results	6-3						
	6.3.3 AOI 1 Conclusions	6-3						
	6.4 AOI 2	6-3						
	6.4.1 AOI 2 Soil Analytical Results	6-3						
	6.4.2 AOI 2 Groundwater Analytical Results	6-4						
	6.4.3 AOI 2 Conclusions	6-4						
	6.5 AOI 3	6-4						
	6.5.1 AOI 3 Soil Analytical Results	6-5						
	6.5.2 AOI 3 Groundwater Analytical Results	6-5						
	6.5.3 AOI 3 Conclusions	6-5						
7.	Exposure Pathways	7-1						
	7.1 Soil Exposure Pathway	7-1						
	7.1.1 AOI 1	7-1						
	7.1.2 AOI 2	7-2						
	7.1.3 AOI 3	7-2						
	7.2 Groundwater Exposure Pathway	7-2						
	7.2.1 AOI 1	7-3						
	7.2.2 AOI 2	7-3						
	7.2.3 AOI 3	7-3						
8.	Summary and Outcome							
	8.1 SI Activities							
	8.2 SI Goals Evaluation	8-1						
	8.3 Outcome	8-3						
a	References	0_1						

Appendices

Appendix A Data Validation Reports
Appendix B Field Documentation

B1. Log of Daily Notice of Field Activities

B2. Sampling Forms

B3. Field Change Request Forms

B4. Survey Data Photographic Log

Appendix D TPP Meeting Minutes/Montana DEQ Memorandum Appendix E Boring Logs and Well Construction Diagrams

Appendix F Analytical Results
Appendix G Laboratory Reports

Figures

Appendix C

Figure 2-1 Facility Location
Figure 2-2 Groundwater Features
Figure 2-3 Groundwater Elevation Contours, May 2019

Figure 2-4 Groundwater Elevation Contours, May 2019

Groundwater Elevation Contours, October 2020

Figure 2-5 Surface Water Features

Figure 3-1 Areas of Interest

Figure 5-1 SI Mobilization 1 Sample Locations
Figure 5-2 SI Mobilization 2 Sample Locations

Figure 6-1 PFOS Detections in Soil During SI Mobilization 1 (AOI 1-3) Figure 6-2 PFOA Detections in Soil During SI Mobilization 1 (AOI 1-3) Figure 6-3 PFOS Detections in Soil During SI Mobilization 2 (AOI 1-3) Figure 6-4 PFOA Detections in Soil During SI Mobilization 2 (AOI 1-3)

Figure 6-5 PFOA and PFOS Detections in Groundwater During SI Mobilization 1 (AOI

1-3) May 25-30, 2019

Figure 6-6 PFOA and PFOS Detections in Groundwater During SI Mobilization 2 (AOI

1-3) October 9-14, 2020

Figure 7-1 Conceptual Site Model, AOI 1 Mt. Defensa Avenue Drainage Ditch

Figure 7-2 Conceptual Site Model, AOI 2 Cantonment Area Northeast Figure 7-3 Conceptual Site Model, AOI 3 Cantonment Area Northwest

Tables

Table ES-1 Screening Levels (Soil and Groundwater)
Table ES-2 Summary of Site Inspection Findings
Table ES-3 Site Inspection Recommendations
Table 2-1 Residential Drinking Water Results

Table 5-1 Samples by Medium

Table 5-2 Monitoring Well Screen Intervals

Table 5-3 Groundwater Elevation

Table 6-1 Screening Levels (Soil and Groundwater)

Table 6-2 PFAS Detections in Surface Soil

Table 6-3 PFAS Detections in Shallow Subsurface Soil Table 6-4 PFAS Detections in Deep Subsurface Soil

Table 6-5PFAS Detections in GroundwaterTable 8-1Summary of Site Inspection FindingsTable 8-2Site Inspection Recommendations

AECOM iii

THIS PAGE INTENTIONALLY BLANK

AECOM

Acronyms and Abbreviations

6:2 FTS 6:2 Fluorotelomer sulfonate
8:2 FTS 8:2 Fluorotelomer sulfonate

µg/kg micrograms per kilogram

µg/L micrograms per liter

°C degrees Celsius

°F degrees Fahrenheit

AECOM Technical Services, Inc.
AFFF aqueous film forming foam
amsl above mean sea level

AOI Area of Interest

Argonne Argonne National Laboratory

ARNG Army National Guard

ATSDR Agency for Toxic Substances and Disease Registry

bgs below ground surface
CDM Camp Dresser, and McKee

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CFR Code of Federal Regulations

COC chain-of-custody
CSM conceptual site model
DA Department of the Army

DASA ESOH Deputy Assistant Secretary of the Army for Environment, Safety and Occupational

Health

DO dissolved oxygen

DoD Department of Defense
DPW Department of Public Works

DRFS Dominion Restoration's Foaming Surfactant

DQI data quality indicator
DQO Data Quality Objective

DRFS Dominion Restoration's Foaming Surfactant

DUA data usability assessment EIS extracted internal standard

ELAP Environmental Laboratory Approval Program

FRB Field Reagent Blank
FTA firefighting training area
FTWHH Fort William Henry Harrison

GCAL Gulf Coast Analytical Laboratories, LLC

HA Health Advisory

HDPE high-density polyethylene

HSA hollow stem auger

IDW investigation-derived waste

ITRC Interstate Technology Regulatory Council

LC/MS/MS liquid chromatography with tandem mass spectrometry

LCS laboratory control spike

LCSD laboratory control spike duplicate

AECOM v

LOD level of detection LOQ level of quantitation

MBMG Montana Bureau of Mines and Geology

MDL method detection limit

mph miles per hour MS matrix spike

MSD matrix spike duplicate

MTARNG Montana Army National Guard

MTDEQ Montana Department of Environmental Quality

NELAP National Environmental Laboratory Accreditation Program

NEtFOSAA N-ethyl perfluorooctanesulfonamidoacetic acid

ng/L nanograms per liter

NMeFOSAA N-methyl perfluorooctanesulfonamidoacetic acid

ORP oxidation reduction potential

OSD Office of the Secretary of Defense

PA Preliminary Assessment

PFAS per- and polyfluoroalkyl substances

PFBA perfluorobutyrate

PFBS perfluorobutanesulfonic acid

PFDA perfluorodecanoic acid
PFDoA perfluorododecanoic acid
PFHpA perfluoroheptanoic acid
PFHxA perfluorohexanoic acid

PFHxS perfluorohexanesulfonic acid

PFNA perfluorononanoic acid
PFOA perfluorooctanoic acid

PFOS perfluorooctanesulfonic acid
PFPeA perfluoropentanoic acid
PFTeDA perfluorotetradecanoic acid
PFTrDA perfluorotridecanoic acid
PFUdA perfluoroundecanoic acid
PID photoionization detector

PPE personal protective equipment PQAPP Programmatic UFP-QAPP

PRC PRC Environmental Management, Inc.

PVC polyvinyl chloride

QAPP Quality Assurance Project Plan

QC quality control

QSM Quality Systems Manual
RI Remedial Investigation
RPD relative percent differences

SI Site Inspection
SL screening level
TOC total organic carbon

TPP Technical Project Planning
UFP Uniform Federal Policy

AECOM vi

US United States

USACE United States Army Corps of Engineers

USCS Unified Soil Classification System USGS United States Geological Survey

USEPA United States Environmental Protection Agency

VA Veterans Administration

AECOM

THIS PAGE INTENTIONALLY BLANK

AECOM

Executive Summary

The Army National Guard (ARNG) is performing Preliminary Assessments (PAs) and Site Inspections (SIs) at per- and polyfluoroalkyl substances (PFAS)-impacted sites at ARNG facilities nationwide. The objective of the SI at each facility is to identify whether there has been a release to the environment from the Areas of Interest (AOIs) identified in the PA and determine the presence or absence of perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), and perfluorobutanesulfonic acid (PFBS) at or above screening levels (SLs), as well as the presence or absence of an additional 15 PFAS. An SI was completed at Fort William Henry Harrison (FTWHH) in Helena, Montana. FTWHH will be referred to as the 'facility' throughout this document.

FTWHH is in Lewis and Clark County, approximately 4 miles west of the state capitol of Helena, Montana. The facility is bounded by the Scratchgravel Hills to the north, the Spokane Bench to the east, the Elkhorn Mountains to the south, and the General Eisenhower Mountains to the west. During the PA, ten potential PFAS release areas were grouped into three AOIs (AOI 1 through 3). Results from the first mobilization performed in 2019 identified three additional release areas that potentially exist at the facility and one directly off-site across Williams Street. SI field activities were conducted in two mobilizations. The first mobilization included permanent groundwater monitoring well installation, development, and sampling; surface and subsurface soil sampling; and groundwater sampling from existing wells from 10 to 20 February 2019 and from 19 to 31 May 2019. The second mobilization included permanent groundwater monitoring well installation, development, and sampling; surface and subsurface soil sampling; and groundwater sampling from existing wells from 5 to 15 October 2020.

To fulfill the project Data Quality Objectives (DQOs) set forth in the approved SI Quality Assurance Project Plan (QAPP) Addendum (AECOM, 2019), samples were collected and analyzed for a subset of 18 PFAS by liquid chromatography with tandem mass spectrometry (LC/MS/MS) compliant with Quality Systems Manual (QSM) 5.1 Table B-15. The 18 PFAS analyzed as part of the ARNG SI program are specific in **Section 5.8** of this Report.

The Department of Defense (DoD) has adopted a policy to retain facilities in the Comprehensive Environmental Restoration, Compensation, and Liability Act (CERCLA) process based on risk-based SLs for soil and groundwater, as described in a memorandum from the Office of the Secretary of Defense (OSD) dated 15 October 2019 (Assistant Secretary of Defense, 2019). The ARNG PFAS SIs follow this DoD policy and, when the maximum site concentration for sampled media exceed the SLs, the AOI will proceed to a Remedial Investigation (RI), the next phase under CERCLA. The SLs apply to three compounds, PFOA, PFOS, and PFBS, for both soil and groundwater, as presented in **Table ES-1**. All other results presented in this report are considered informational in nature and serve as an indication as to whether soil and groundwater contain or do not contain the 18 PFAS analyzed within the boundaries of the facility.

Sample chemical analytical concentrations were compared against the project SLs as described in **Table ES-1**. A summary of the results of the SI data relative to the SLs is as follows:

- PFOS was detected in groundwater at 62.2 nanograms per liters (ng/L) at AOI1-MW3 in excess of the SL. Based on the results of the SI, further evaluation of AOI 1 is warranted in the RI.
- PFOS was detected in groundwater at 118 ng/L at AOI2-MW1 in excess of the SL. Based on the results of the SI, further evaluation of AOI 2 is warranted in the RI.
- Additional offsite residential drinking water sampling is recommended due to the SL groundwater exceedance of PFOS at AOI 1 and AOI 2.

• The detected concentrations of PFOA, PFOS, and PFBS in soil samples from all AOIs were below the SLs.

Tables ES-2 summarizes the SI results for soil and groundwater. Based on the conceptual site models (CSMs) developed and revised in light of the SI findings, there is potential for exposure to residential drinking water receptors caused by DoD activities at or adjacent to the facility.

Table ES-3 summarizes the rationale used to determine if an AOI should be considered for further investigation under CERCLA and undergo an RI. Based on the results of this SI, further evaluation is warranted in the RI for AOI 1 and AOI 2.

Table ES-1 Screening Levels (Soil and Groundwater)

Analyte	Residential (Soil) (µg/kg)ª 0-2 feet bgs	Industrial/ Commercial Composite Worker (Soil) (µg/kg) ^a 2-15 feet bgs	Tap Water (Groundwater) (ng/L) ^a		
PFOA	130	1,600	40		
PFOS	130	1,600	40		
PFBS	130,000	1,600,000	40,000		

Notes:

Table ES-2 Summary of Site Inspection Findings

AOI	Potential PFAS Release Area	Soil – Source Area	Groundwater - Source Area	Groundwater – Facility Boundary		
1	Mt. Defensa Avenue Drainage Ditch	•	•			
1	1049th Engineer Detachment Building 1010	•	•	NA		
1	Prairie Dog Relocation (three locations)		NA	NA		
1	1049th Firefighting Training Area 1	•	•	NA		
1	1049th Firefighting Training Area 3		NA	NA		
1	MacDonald Property			NA		
2	Former Weasel Barn	•				
2	Excavated Soil from Mt. Defensa Ave Drainage Ditch	•	•	•		
2	1049th Engineer Detachment Building M1	•	•	•		
2	1049th Firefighting Training Area 4	•		NA		
3	Planned Structure Fire	0	•	NA		
3	Burial Trench	NA	•	NA		
3	1049th Firefighting Training Area 2	•	•	NA		

Leaend:

NA = Not applicable (samples not at facility boundary)

= detected; exceedance of the screening levels

= detected; no exceedance of the screening levels

) = not detected

a.) Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater and Soil using United States Environmental Protection Agency's (USEPA's) Regional Screening Level Calculator. HQ=0.1. 15 October 2019.

Table ES-3 Site Inspection Recommendations

AOI	Description	Rationale	Future Action		
1	Mt. Defensa Avenue Drainage Ditch, 1049th Engineer Detachment Building 1010, 1049th Firefighting Training Area 1, 1049th Firefighting Training Area 3	No exceedances of SL in groundwater at the source area; however, exceedances of SLs in groundwater at the facility boundary. No exceedances of SLs in soil.	Proceed to RI		
1	Prairie Dog Relocation (Three Release Areas)	No exceedances of SLs in soil.	No further action		
2	Former Weasel Barn, Excavated Soil from Mt. Defensa Ave Drainage Ditch, 1049th Firefighting Training Area 4	No exceedances of SL in groundwater at the source area; however, exceedances of SLs in groundwater at the facility boundary. No exceedances of SLs in soil.	Proceed to RI		
2	1049th Engineer Detachment Building M1	No exceedances of SLs in groundwater or soil.	No further action		
3	Planned Structure Fire, Burial Trench, and 1049th Firefighting Training Area 2	No exceedances of SLs in groundwater or soil.	No further action		

1. Introduction

1.1 Project Authorization

The Army National Guard (ARNG) G9 is the lead agency in performing Preliminary Assessments (PAs) and Site Inspections (SIs) for perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) at Impacted Sites, ARNG Installations, Nationwide. This work is supported by the United States (US) Army Corps of Engineers (USACE) Baltimore District and their contractor, AECOM Technical Services, Inc. (AECOM), under Contract Number W912DR-12-D-0014, Task Order W912DR17F0192, issued 11 August 2017. The ARNG performed this SI at Fort William Henry Harrison (FTWHH) in Helena, Montana. FTWHH will be referred to as the 'facility' throughout this document.

The SI project elements were performed in compliance with Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA; United States [US] Environmental Protection Agency [USEPA], 1980), as amended, the National Oil and Hazardous Substances Pollution Contingency Plan (40 Code of Federal Regulations [CFR] Part 300; USEPA, 1994), and in compliance with US Department of the Army (DA) requirements and guidance for field investigations including specific requirements for sampling for PFOA, PFOS, and perfluorobutanesulfonic acid (PFBS), and the group of related compounds known in the industry as per- and polyfluoroalkyl substances (PFAS). The term PFAS will be used throughout this report to encompass all PFAS chemicals being evaluated, including PFOA, PFOS, and PFBS, which are the key components of the suspected releases being evaluated, and the other 15 related compounds listed in the task order.

1.2 SI Purpose

A PA was performed at FTWHH (AECOM, 2018c) that identified ten potential PFAS release areas which were grouped into three Areas of Interest (AOIs). Results from the first mobilization performed in 2019 identified three additional release areas potentially existed at the facility and one directly off-site across Williams Street. The objective of the SI is to identify whether there has been a release to the environment from the AOIs and determine the presence or absence of PFOA, PFOS, and PFBS at or above screening levels (SLs).

As stated in the Federal Facilities Remedial Site Inspection Summary Guide (USEPA, 2005), an SI has five goals:

- 1) Develop information to potentially eliminate a release from further consideration because it is determined that it poses no significant threat to human health or the environment.
- 2) Determine the potential need for a removal action.
- 3) Collect or develop data to evaluate potential release.
- 4) Collect data to better characterize the release for more effective and rapid initiation of a Remedial Investigation (RI).
- 5) Collect data to determine whether the release is more than likely the result of activities associated with the Department of Defense (DoD).

In addition to the USEPA-identified goals of an SI, the ARNG SI also identifies whether there are potential offsite PFAS sources.

AECOM 1-1

THIS PAGE INTENTIONALLY BLANK

AECOM 1-2

2. Site Background

2.1 Facility Location and Description

FTWHH is in Lewis and Clark County, approximately 4 miles west of the state capitol of Helena, Montana (**Figure 2-1**). The facility houses the headquarters of the Montana ARNG (MTARNG) and occupies 6,717 acres.

FTWHH was authorized by an act of Congress in 1892 and was constructed between 1894 and 1896 (Argonne National Laboratory [Argonne], 1993). In 1903, the War Department changed the installation's name from Fort Benjamin Harrison to Fort William Henry Harrison. The MTARNG began using FTWHH for training in 1911; however, FTWHH remained an active US Army post until 1913 (MTARNG, 2001; Argonne, 1993). In 1913, FTWHH was placed in caretaker status by the US Army and was periodically occupied by the MTARNG until 1919 (MTARNG, 2001). In 1919, the US Public Health Service took possession of the facility and began to operate a hospital, which is currently under the jurisdiction of the Federal Government and is operated by the Veterans Administration (VA). From 1924 to 1928, the State of Montana expanded the facility area by leasing surrounding land. The MTARNG was absent from the facility from 1940 to 1946. During that time, the US Army assumed control and used FTWHH as a training base and further expanded the facilities. FTWHH has been used for training by the MTARNG since 1947 (Argonne, 1993). FTWHH was under the jurisdiction of the Federal Government until 1966, when it was converted to a training site for ARNG, transferring management to the Montana Department of Military Affairs. The current lease, which began in 1986, extended the lease for an indefinite term.

2.2 Facility Environmental Setting

FTWHH is within the Northern Rocky Mountain physiographic province on the western edge of Helena Valley (PRC Environmental Management, Inc. [PRC] 1996). Helena Valley is a northwest-trending, oval shaped basin that is approximately 875 square miles and is surrounded by mountains (MTARNG 2001). The facility is bounded by the Scratchgravel Hills to the north, the Spokane Bench to the east, the Elkhorn Mountains to the south, and the General Eisenhower Mountains to the west (MTARNG 2001; PRC 1996). Elevations at FTWHH range from 5,318 feet above mean sea level (amsl) at the western boundary to approximately 4,060 feet amsl in the northeast corner (Camp Dresser, and McKee [CDM], 2006). The Continental Divide is approximately 5 miles west of the facility (MTARNG, 2001).

2.2.1 Geology

Helena Valley is bounded by folded and fractured sedimentary, metamorphic, and igneous bedrock of Precambrian to Cretaceous age (US Geological Survey [USGS], 1992). The valley fill has been mapped with thicknesses of up to 6,000 feet with source materials consisting of fine-and coarse-grained Tertiary materials. The valley fill is unconformably overlain by up to 100 feet of Quaternary alluvium (Montana Department of Environmental Quality [MTDEQ], 2006).

FTWHH is on gently sloping pediment gravels at the base of General Eisenhower Mountains between two principal streams flowing into Helena Valley: Sevenmile Creek to the north and Tenmile Creek to the south (MTARNG 2001; CDM 2006). Quaternary alluvial deposits form the uppermost unit (**Figure 2-2**). The thickness of the alluvial deposits is highly variable and is predominantly thicker in the northern half of the facility (MTARNG, 2001). The gravel layers of the alluvium are made up of fragments of quartzite, shale, and limestone between layers of clay and silt (MTARNG, 2001).

Precambrian rocks crop out in the hills and mountains to the south, west, and north of FTWHH and underlie it at depths ranging from 80 to 100 feet. The Precambrian bedrock consists mainly

of argillite, feldspathic quartzite, limestone, and dolomite of the Empire and Helena formations and members of the Missoula Group (Argonne, 1993).

2.2.2 Hydrogeology

Stratified lenses of cobbles, gravel, and sand form the primary Helena Valley aquifer. The water bearing zones, intercalated clay, and silt compose the upper few hundred feet of the valley fill. Discontinuity of the clay and silt deposits allows for hydraulic connection of the water bearing zones to make up a single complex aquifer (USGS, 1992). The estimated transmissivity of the water bearing zones is 10,000 square feet per day (Argonne, 1993).

The principal water bearing zones at FTWHH are Quaternary alluvium and Tertiary pediments deposits. The unconfined Quaternary aquifer attains a maximum saturated thickness of about 70 feet in the southern half of the facility and is largely absent near the northeastern corner (Argonne, 1993).

The depth to groundwater at the facility is typically between 14 and 43 feet below ground surface (bgs). In 1992, the USGS estimated that 60% of the wells near the facility are drilled to 70 feet bgs or less.

Regionally, groundwater in the Helena Valley aquifer flows from the south, west, and north margins of the valley toward the northeast corner of the Helena Valley basin (USGS, 1992) and Lake Helena (**Figure 2-2**). Locally at FTWHH, the groundwater flow direction is predominantly to the east in the southern half of the installation and to the east-southeast in the northern part of the installation (MTDEQ, 2006). Depth to water measurements from the May 2019 and October 2020 synoptic gauging event were used to calculate groundwater elevations. The groundwater contours for May 2019 and October 2020 are shown in **Figure 2-3** and **Figure 2-4**, respectively.

Recharge to the Helena Valley aquifer is through infiltration of streamflow and precipitation, leakage from irrigation canals, infiltration of excess irrigation water, and inflow from underlying bedrock fractures (USGS, 1992). Lake Helena is the primary point for surface water and groundwater discharge from the basin. Discharge also occurs to stream and irrigation canals and withdrawals from wells (USGS, 1992).

Although it is outside Helena city limits, FTWHH draws from the City of Helena water supply. The city uses a combination of groundwater and surface water (the Missouri River and Tenmile Creek) as sources for its residents (Helena Water Utilities Public Water System, 2004; Department of Public Works [DPW], 2012). The Eureka Well is the source of potable water for FTWHH and is approximately 3 miles southeast of the facility, in the downtown Helena area (DPW, 2012). According to the 2018 Consumer Confidence Report (DPW, 2012), the Eureka Well is a pure groundwater source that requires no further treatment. In addition, the City of Helena was selected to participate in the Third Unregulated Contaminant Monitoring Rule assessment monitoring, and no PFAS were detected for Helena, Montana. A search of the Montana Bureau of Mines and Geology (MBMG) Groundwater Information System confirmed the presence of domestic water supply wells adjacent to FTWHH (MBMG, 2018). Residential lots east of Williams Street were identified as having private wells.

2.2.3 Hydrology

FTWHH is within the Sevenmile Creek watershed (CDM, 2006) (**Figure 2-5**). Three perennial streams and a number of intermittent streams that originate in the foothills west of the facility flow through the facility (Argonne, 1993; CDM, 2006). Cherry Creek is a perennial stream that flows east through training and maneuver areas at FTWHH (MTARNG, 2001). Granite Creek is a perennial tributary of Sevenmile Creek that flows northeast through the northern third of the facility (MTARNG, 2001). Blue Cloud Creek, a perennial tributary of Tenmile Creek, crosses the extreme southwestern corner of the facility, and drains an area of undeveloped land on the western and

southwestern side (MTARNG, 2001; CDM, 2006). Blue Cloud Creek and Granite Creek do not drain the Cantonment Area. The rest of the streams on FTWHH are intermittent and occur during heavy rainfall or rapid snowmelt.

Sevenmile Creek and Tenmile Creek are the largest perennial streams near the facility (CDM, 2006). Sevenmile Creek joins Tenmile Creek about 1 mile east of the downstream property boundary (Argonne, 1993; CDM, 2006). The water diverted upgradient of FTWHH from the upper Tenmile Creek watershed provides about 70% of the municipal supply for Helena from June through September, and 100% of the city supply from October through May (USGS, 2000). Streamflow in the lower Tenmile Creek, which runs south of FTWHH, is partly controlled by two small municipal-supply reservoirs (Scott and Chessman) in the upper Tenmile Creek watershed and by diversions for municipal water supply and irrigation (USGS, 2001). In addition, a 30-acre spring-fed man-made lake exists approximately 1 mile southeast of the facility within Spring Meadow State Park. The lake is a popular swimming, fishing, and recreational area for Helena residents.

A large, unnamed drainage ditch runs from west to east through the VA property adjacent to FTWHH, along Mt. Defensa Avenue, and offsite by the Main Gate. For the purposes of this report, this drainage ditch will be referred to as the Mt. Defensa Avenue Drainage Ditch. Precipitation, snow melt, and other surface runoff on the VA property and much of the Cantonment Area is captured in the Mt. Defensa Avenue Drainage Ditch, which flows to the Main Gate on Williams Street and offsite. During rapid snow melt or high intensity rain events, runoff is channelized and flows rapidly through the ditch and Cantonment Area discharging just outside the Main Gate of the facility. As a result of the high velocity flow, limited runoff infiltrates into the subsurface of Mt. Defensa Avenue Drainage Ditch itself. Surface water runoff that reaches the Main Gate dissipates and infiltrates the subsurface and may reach groundwater.

2.2.4 Climate

The climate at FTWHH is semiarid (USGS, 1992). In December, the average temperature is 32 degrees Fahrenheit (°F). July and August have the highest average temperatures, at 86°F and 85°F, respectively. The greatest mean monthly precipitation occurs in June, and the greatest mean monthly snowfall occurs in January (World Climate, 2019). The average annual precipitation is 12.12 inches at the Helena Regional Airport weather station, approximately 6 miles southeast of the facility.

The area is subject to hailstorms. Flash flooding can occur in the Helena Valley during heavy rainstorms and rapid snowmelt (Argonne, 1993). The frost-free period is usually from May to September. Winds generally blow westerly at about 7 to 8 miles per hour (mph), and stronger gusts can reach 55 to 65 mph (MTARNG, 2001). Brisk westerly and northwesterly winds are common, particularly in the late winter and early spring. Chinook winds, which produce warmer temperatures in the winter months, are also common (Argonne, 1993).

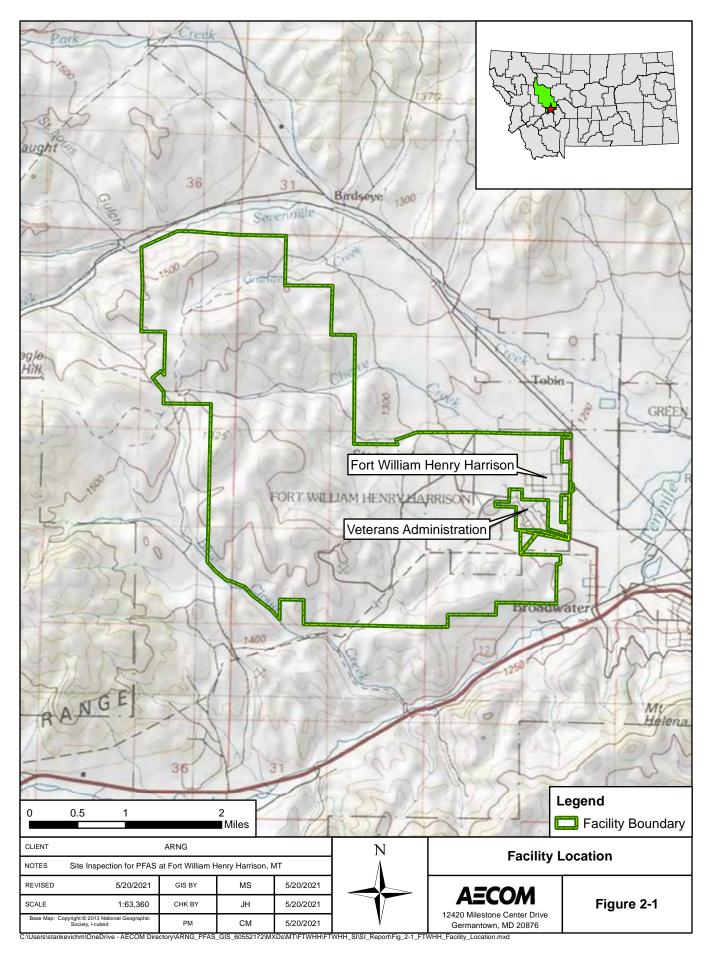
2.2.5 Current and Future Land Use

FTWHH contains a cantonment area with dining and support facilities and five training range areas for the ARNG, the US Armed Forces, and other government and civilian organizations to practice combat skills and operations; access to the facility is controlled. The VA controls property immediately adjacent to the south and west of the Cantonment Area. Land use to the east, west, and north of the facility is primarily agricultural with scattered farms and residences, grazing land, and hilly to mountainous terrain. Land use to the south is a mixture of residential and agricultural.

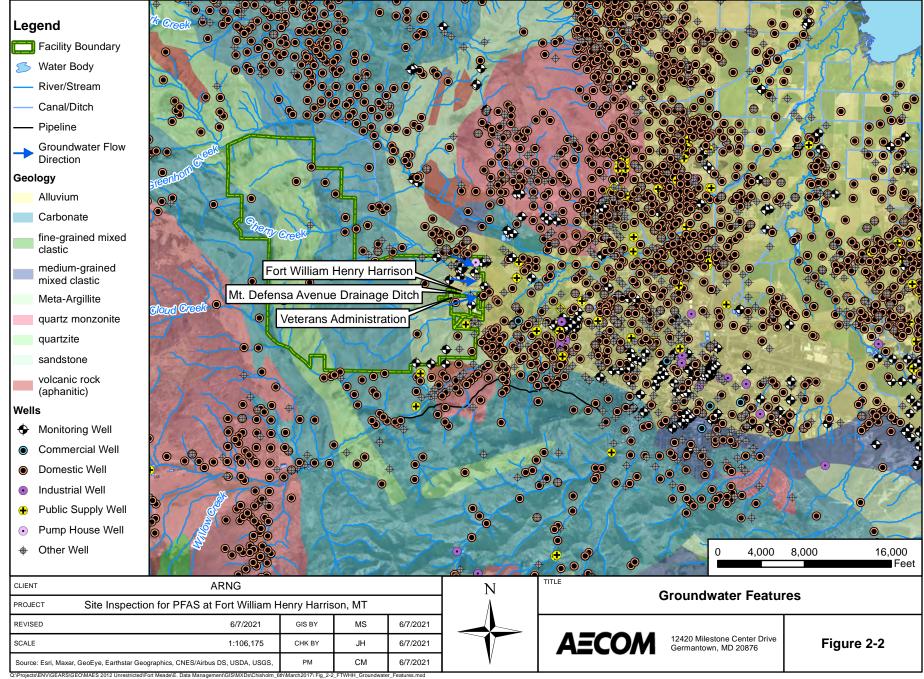
The nearest urban area is Helena. According to the 2016 US Census, the estimated population of Helena is 31,169 (US Census Bureau, 2016). Helena has experienced significant population growth over the last decade, and several agricultural lands have been converted to residential subdivisions and single-resident lots to accommodate the growth (MTARNG, 2001). Lands to the

east and north of FTWHH are designated as urban growth areas for Lewis and Clark County. Land use to the south and west is not expected to change.

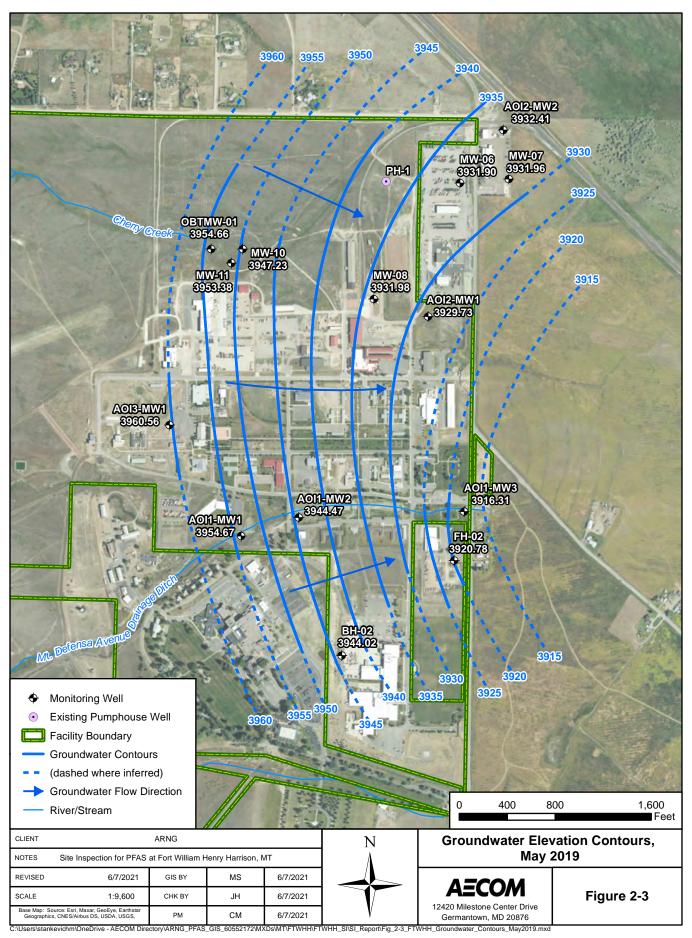
The influx of people and need for new housing in the vicinity of FTWHH has created the possibility of encroachment or intrusion on the land or property owned by the MTARNG (Nakata Planning Group, LLC, 2000). In 2015, the Prickly Pear Land Trust acquired 558 acres in the area east of Williams Street in partnership with FTWHH with funding from the Army Compatible Use Buffer Program to address the encroachment concerns. This land is designated for open space and habitat (Westech Environmental Services, Inc., 2017).


2.3 History of AFFF Use

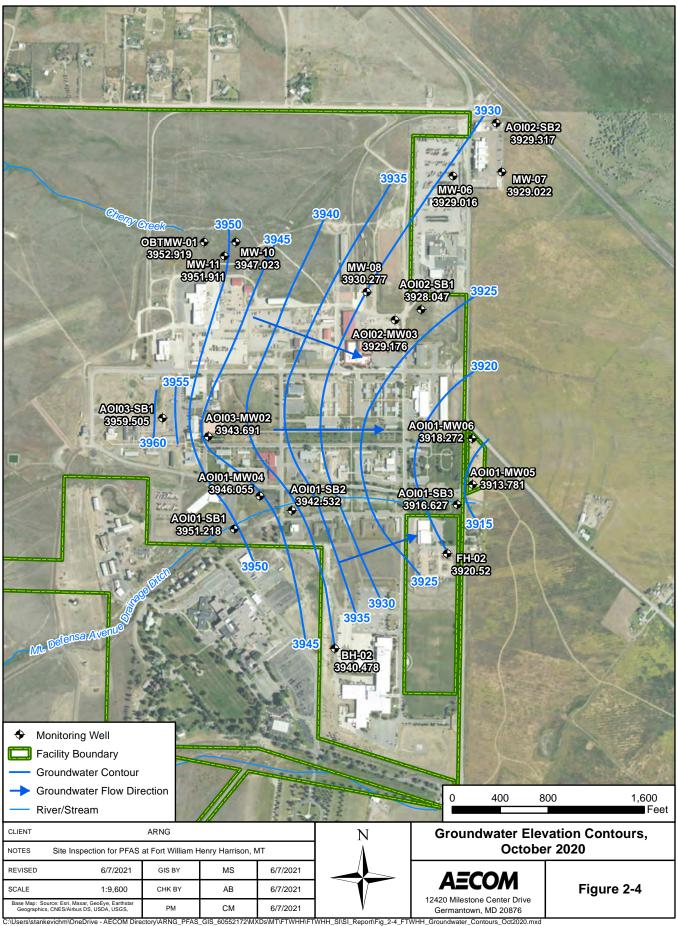
Ten potential PFAS release areas, where aqueous film forming foam (AFFF) may have been used or released historically, were identified at FTWHH during the PA (AECOM, 2018c). The potential PFAS release areas were grouped into three AOIs based on proximity to one another and presumed groundwater flow. A description of each AOI is presented in **Section 3**. Findings from the PA indicated AFFF use at the facility primarily ranged from the late-1980s to the early-2000s. AFFF was historically used by the MTARNG during fire training activities (planned structural fires and training exercises) and pest removal activities (prairie dog relocation). AFFF was stored in several buildings at the facility during this time, but no releases were documented in these areas.


2.4 Drinking Water Sampling

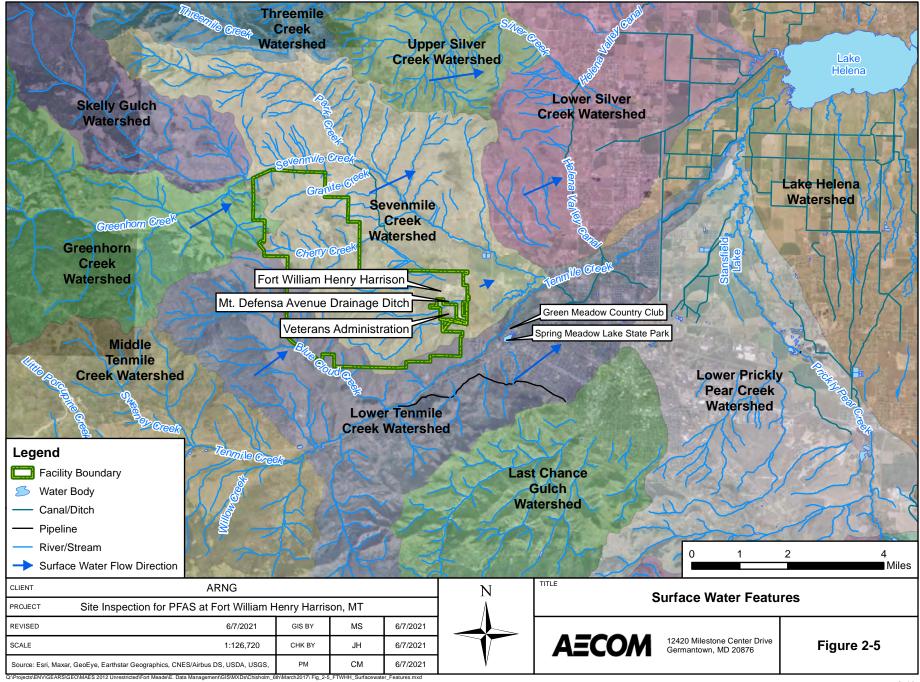
Due to historical fire training activities completed with AFFF, the potential exists for exposure to offsite residential drinking water receptors immediately east of the FTWHH boundary. Prior to sampling, approval was obtained from the Deputy Assistant Secretary of the Army for Environment, Safety and Occupational Health (DASA ESOH). Drinking water samples were collected from five potable wells located in closest proximity to the facility boundary (downgradient of AOI 1). No drinking water samples were collected downgradient of AOI 2 and AOI 3 because no residential properties exist at the facility boundary. Sample results are provided below and in **Table 2-1**:


- PFOA Detections ranged from 3.75 nanogram per liter (ng/L) (Potable-02) to 16.6 ng/L (Potable-05).
- PFOS Detections ranged from 3.11 ng/L (Potable-02) to 22.1 ng/L (Potable-05).
- PFBS Detections ranged from 2.48 ng/L (Potable-04) to 21.2 ng/L (Potable-05).

THIS PAGE INTENTIONALLY BLANK



THIS PAGE INTENTIONALLY BLANK



2-9

THIS PAGE INTENTIONALLY BLANK

THIS PAGE INTENTIONALLY BLANK

THIS PAGE INTENTIONALLY BLANK

Table 2-1 PFAS Detections in Residential Drinking Water Site Inspection Report, Fort William Henry Harrison

	Area of Interest							POT	ABLE						
Sample ID		POTABLE-01		POTABLE-02		POTABLE-02-DUP		POTABLE-03		POTABLE-04		POTABLE-05		POTABLE-05-DUP	
Sample Date		12/03	3/2019	12/03/2019		12/03/2019		12/03/2019		12/03/2019		03/16/2020		03/16/2020	
Analyte	EPA HA ^a	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Water, PFAS via EPA 537	.1 (ng/L)														
PFBS	-	7.31	J	4.23	J	4.31	J	2.55	J	2.48	J	21.2		20.6	
PFHpA	-	10.2		3.82	J	4.05	J	5.77	J	3.81	J	20.9		19.1	
PFHxA	-	30.2		13.4		14.2		14.4		10.0		54.1		53.2	
PFHxS	-	59.8		24.3		24.6		19.1		14.6		182		186	
PFOA	70	6.46	J	3.75	J	4.41	J	6.87	J	7.76	J	16.6		16.5	
PFOS	70	17.0		3.11	J	3.15	J	15.4		13.3		19.5		22.1	
Total PFOA+PFOS	70	23.5		6.86		7.56		22.3		21.1		36.1		38.6	

Detected concentration exceeded EPA HA

References
a. United States Environmental Protection Agency. 2016. Drinking Water Health Advisory for Perfluorocctanoic Acid (PFOA). Office of Water (4304T). Health and Ecological Criteria Division, Washington, DC 20460. EPA Document Number: 822-R-16-005. May 2016. / EPA. 2016. Drinking Water Health Advisory for Perfluorocctane Sulfonate (PFOS). Office of Water (4304T). Health and Ecological Criteria Division, Washington, DC 20460. EPA Document Number: 822-R-16-004. May 2016.

Interpreted Qualifiers

J = Estimated concentration

Chemical Abbreviations

per- and polyfluoroalkyl substances PFAS PFBS perfluorobutanesulfonic acid PFHpA perfluoroheptanoic acid PFHxA perfluorohexanoic acid PFHxS perfluorohexanesulfonic acid PFOA perfluorooctanoic acid PFOS perfluorooctanesulfonic acid

Acronyms and Abbreviations

DUP Duplicate

EPA United States Environmental Protection Agency

HA Health Advisory Qual Interpreted Qualifier ng/L nanogram per liter Not applicable

THIS PAGE INTENTIONALLY BLANK

3. Summary of Areas of Interest

This section presents a summary of each potential PFAS release area by AOI. The FTWHH PA identified ten potential PFAS release areas which were grouped into three AOIs based on proximity and inferred direction of groundwater flow (**Figure 3-1**). Results from the first mobilization performed in 2019 suggested four additional release areas potentially existed at the facility and directly off-site. Additional PA-level interviews were conducted with site workers, and as a result, four additional potential PFAS releases areas were identified (MTARNG 1049th Firefighting Training Area 1, 2, 3, and 4) within the three existing AOI boundaries. A summary of each AOI is presented below.

3.1 AOI 1

AOI 1 consists of seven potential PFAS release areas as described below, the Black-Tailed Prairie Dog Relocation (three relocation areas), MTARNG 1049th Engineer Detachment (Building 1010), Mt. Defensa Avenue Drainage Ditch, MTARNG 1049th Firefighting Training Area 1, and MTARNG 1049th Firefighting Training Area 3.

3.1.1 Black-Tailed Prairie Dog Relocation

In 1997, the MTARNG began renovations in the southeast section of the Cantonment Area, near the Mt. Defensa Avenue Drainage Ditch. At the time, a colony of black-tailed prairie dogs inhabited the renovation zone. The MTARNG live-trapped and moved the prairie dogs to a previously unoccupied area approximately 0.5 miles north of the Cantonment Area to the Charles M. Russell National Wildlife Refuge (FaunaWest, 1998).

During the last week of trapping in February 1998, an attempt was made to flush remaining prairie dogs from their burrows at multiple locations using a mixture of water and firefighting training foam. The MTARNG 1049th Engineer Detachment recalled using firefighting training foam, not AFFF, to flush the prairie dogs from their burrows. The *Relocation of the Fort Harrison Prairie Dog Colony* (FaunaWest, 1998) contains materials information from Defense Supply Center, Columbus, for Dominion Restoration's Foaming Surfactant (DRFS) in a 3% solution. According to this pamphlet, DRFS is "a solvent free, environmentally acceptable surrogate that was developed to simulate AFFF" and "a non-hazardous, water-based, neutral pH product that is 100 percent completely biodegradable" with the same appearance as AFFF.

The foam mixture was delivered through a 2-inch diameter fire hose from a FTWHH firetruck to approximately 20 prairie dog burrows (combined into three areas). Two prairie dogs were flushed from their burrows, captured, and placed into a live-trap for later release. Approximately 750 gallons of the firefighting training foam mixture were used to flush the prairie dog burrows (FaunaWest, 1998).

Additionally, the MTARNG relocated a black-tailed prairie dog colony that was on the VA property. The colony location was not sampled during the SI because it was outside the boundary of FTWHH.

3.1.2 MTARNG 1049th Engineer Detachment (Building 1010)

The MTARNG 1049th Engineer Detachment currently operates out of Building 1010, which was constructed in 1995 and is located at the southeast corner of Rome Avenue and Middle Road.

AFFF was stored at the MTARNG 1049th Engineer Detachment buildings and was only added to the firetrucks when it was intended for imminent use due to its corrosive action on the storage tanks. No information was available on the concentration or amount of AFFF stored; however, the MTARNG 1049th Engineer Detachment operated two types of trucks: small trucks capable of

holding approximately 40 gallons of solution and large trucks capable of holding approximately 100 gallons of solution. Annual AFFF fire training exercises were conducted by the MTARNG 1049th Fire Department offsite at the Helena Regional Airport and/or at Malmstrom Air Force Base in Great Falls, Montana. No regularly scheduled fire training exercises were conducted at FTWHH.

During fire training exercises, the majority of AFFF added to the trucks was expended. The trucks were washed, and residual AFFF was discharged with the wash water and allowed to dissipate on the ground. Washing and emptying of the trucks occurred at Building 1010 from 1995 to the early 2000s. The discharge was washed into the Mt. Defensa Avenue Drainage Ditch. The last known occurrence of washing and emptying of the trucks was in the early-2000s.

3.1.3 Mt. Defensa Avenue Drainage Ditch

As described in **Section 2.2.3**, the Mt. Defensa Avenue Drainage Ditch flows west to east through the VA property, into FTWHH along Mt. Defensa Avenue, and offsite by the Main Gate on Williams Street. Prior to 2016, little to no infiltration occurred within the Mt. Defensa Avenue Drainage Ditch due to the high velocity flow during snow melt and high intensity rain events. The ditch was reconfigured with large retention areas in 2016, slowing stormwater flow through the ditch. Information obtained during the PA indicated potential PFAS releases to soil have occurred along the Mt. Defensa Avenue Drainage Ditch from MTARNG activities onsite, as well as VA fire department activities upgradient of the facility. In February 2012, a rapid snowmelt event caused water to run vigorously through the drainage ditch. The vigorous movement of the water caused foaming in the drainage ditch that ran offsite to the retention pond just outside the main gate of the facility. The cause of the foaming is unknown; however, potential PFAS releases in and around the drainage ditch were noted by interviewees. Therefore, it is possible that the cause of the foaming is residual PFAS from training activities.

The Mt. Defensa Avenue Drainage Ditch runs from west to east through the VA property adjacent to FTWHH, along Mt. Defensa Avenue, and offsite by the Main Gate. Precipitation, snow melt, and other surface runoff on the VA property and much of the Cantonment Area is captured in the Mt. Defensa Avenue Drainage Ditch, which flows to the Main Gate on Williams Street. Just outside the main gate there is a culvert that discharges stormwater across Williams Street between the MTARNG property and residential properties. During rapid snow melt or high intensity rain events, runoff is channelized and flows through the ditch and Cantonment Area discharging just outside the main gate between the MacDonald Property and the residential properties. Surface water runoff that reaches the area between the MacDonald Property and residential properties dissipates and infiltrates the subsurface and may reach groundwater.

3.1.4 MTARNG 1049th Firefighting Training Area 1 and 3

After the first SI mobilization was completed, two firefighting training areas (FTAs) were identified in AOI 1. The 1049th trained with foam in the Navy Parking Lot north of AOI1-MW1 (MTARNG 1049th Firefighting Training Area 1) and in the channel area east of AOI1-MW2 before the channel was excavated (MTARNG 1049th Firefighting Training Area 3). Specific details regarding the frequency, volume, chemical composition, and concentration of any potential AFFF used at either FTA are not known.

3.2 AOI 2

AOI 2 consists of four potential PFAS release areas as described below, the Excavated Soil from Mt. Defensa Avenue Drainage Ditch. Former Weasel Barn, MTARNG 1049th Engineer Detachment (Building M1), and MTARNG 1049th Firefighting Training Area 4.

3.2.1 Excavated Soil from Mt. Defensa Avenue Drainage Ditch

Due to flooding of the Mt. Defensa Avenue Drainage Ditch during rapid snowmelt and large rainfall events, the central portion of the ditch within the FTWHH boundary was widened in 2016 by excavating soil from the ditch. Based on the potential PFAS releases to this ditch, this soil is potentially contaminated with PFAS and was used to create a military vehicle staging area onsite near a retention pond in the northeast section of the Cantonment Area.

3.2.2 Former Weasel Barn

The Former Weasel Barn located in the northeast section of the Cantonment Area, north of Sanananda Drive, was demolished in the winter of 2002 as part of a live-burn fire training exercise. The Former Weasel Barn housed the Weasel, a tracked vehicle designed for operations in Arctic environments. The MTARNG 1049th burned the structure, and the MTARNG 1049th Team Chief recalled using AFFF to extinguish the fire. No information was available on the volume, chemical composition, or concentration of AFFF used during the event.

3.2.3 MTARNG 1049th Engineer Detachment (Building M1)

Prior to 1995, the MTARNG 1049th Engineer Detachment operated out of the former Post Engineers Maintenance Shop (Building M1), near the Field Maintenance Shop #3, at the southeast corner of Williams Street and Barrett Road in the 1980s. Although Building M1 is located outside the boundary of FTWHH, the property is controlled by MTARNG. AFFF storage and truck operations are described in **Section 3.1.2**. During fire training exercises, the majority of AFFF added to the trucks was expended. The trucks were washed, and residual AFFF was discharged with the wash water and allowed to dissipate on the ground at Building M1 in the late-1980s.

3.2.4 MTARNG 1049th Firefighting Training Area 4

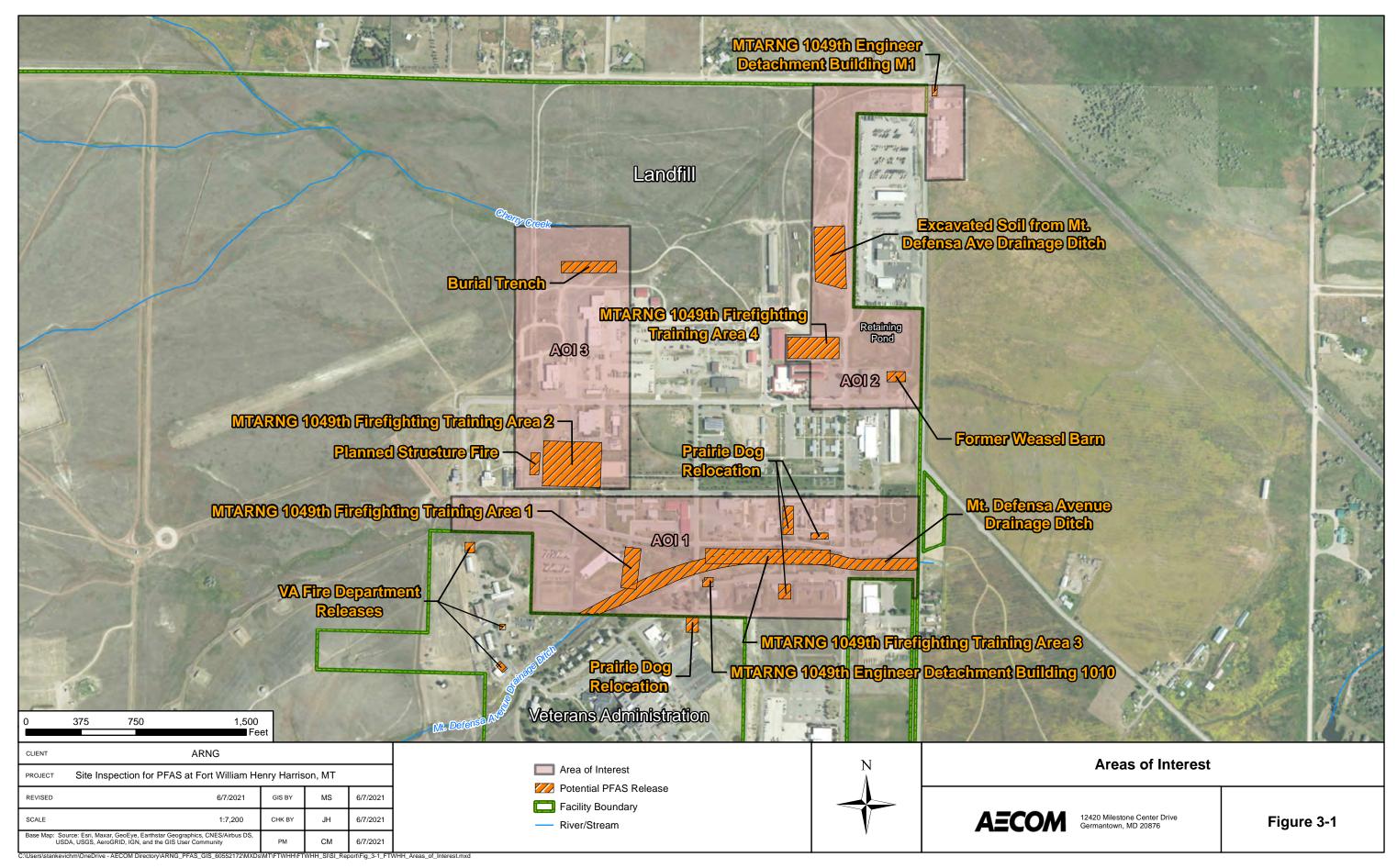
After the first SI mobilization was completed, one additional FTA was identified in AOI 2. The 1049th trained with foam in the parking lot south of MW-08. Specific details regarding the frequency, volume, chemical composition, and concentration of any potential AFFF used at the FTA are not known.

3.3 AOI 3

AOI 3 consists of three potential PFAS release areas as described below, the Planned Fire Structure, Burial Trench, and MTARNG 1049th Firefighting Training Area 2.

3.3.1 Planned Fire Structure

A structure was burned and used as a live-fire training exercise in the northwest portion of the Cantonment Area near the current Dining Facility (Building 410). The MTARNG 1049th Team Chief recalled using AFFF to extinguish this structure fire. Based on aerial photography, the structure was burned sometime between 1995 and 2002. Specific details regarding the frequency, volume, chemical composition, and concentration of the AFFF used during the exercise is not known.


3.3.2 Burial Trench

Prior to 1987, an area approximately 200 feet north of Colle Ferro Avenue in the northwest section of the Cantonment Area was used to dig a burial trench and dispose of debris and ordnance. One MTARNG retiree indicated that vehicles were placed in the burial trench, burned, and

extinguished with AFFF by MTARNG Firefighters. This use of AFFF could not be confirmed by any other interviewees during the PA, and no information was available on the volume, chemical composition, and concentration of the potential AFFF released. The Combined Support Maintenance Shop was constructed due south of the burial trench in 1987.

3.3.3 MTARNG 1049th Firefighting Training Area 2

After the first SI mobilization was completed, one additional FTA was identified in AOI 3. The 1049th trained with foam near the former location of Building 410 (Planned Fire Structure). Specific details regarding the frequency, volume, chemical composition, and concentration of any potential AFFF used at the FTA are not known.

THIS PAGE INTENTIONALLY BLANK

AECOM 3-6

4. Project Data Quality Objectives

Project Data Quality Objectives (DQOs) are qualitative and quantitative statements that specify the quality of data and define the level of certainty required to support the project decision-making process. The specific DQOs established for this facility are described below. These DQOs were developed in accordance with the USEPA's seven-step iterative process (USEPA, 2006).

4.1 Problem Statement

The following problem statement was developed during project planning:

The presence of PFAS, which may pose a risk to human health or the environment, in environmental media at the facility is currently unknown. PFAS are classified as emerging environmental contaminants that are garnering increasing regulatory interest due to their potential risks to human health and the environment. The regulatory framework for managing PFAS at both the federal and state level continues to evolve.

The DoD has adopted a policy to retain facilities in the CERCLA process based on risk-based SLs for soil and groundwater, as described in a memorandum from the Office of the Secretary of Defense (OSD) dated 15 October 2019 (Assistant Secretary of Defense, 2019). The ARNG program under which this SI was performed follows this DoD policy. Should the maximum site concentration for sampled media exceed the SLs established in the OSD memorandum, the AOI will proceed to the next phase under CERCLA. The SLs established in the OSD memorandum apply to three compounds: PFOS, PFOA, and PFBS. The SLs are presented in **Section 6.1** of this Report.

The following quotes from the DA policy documents form the basis for this project (DA, 2016; DA, 2018):

- "The Army will research and identify locations where PFOS- and/or PFOA-containing products, such as AFFF, are known or suspected to have been used. Installations shall coordinate with installation/facility fire response or training offices to identify AFFF use or storage locations. The Army will consider FTAs, AFFF storage locations, hangars/buildings with AFFF suppression systems, fire equipment maintenance areas, and areas where emergency response operations required AFFF use as possible source areas. In addition, metal plating operations, which used certain PFOS-containing mist suppressants, shall be considered possible source areas."
- "Based on a review of site records...determine whether a CERCLA PA is appropriate for identifying PFOS/PFOA release sites. If the PA determines a PFOS/PFOA release may have occurred, a CERCLA SI shall be conducted to determine presence/absence of contamination."
- "Identify sites where perfluorinated compounds are known or suspected to have been released, with the priority being those sites within 20 miles of the public systems that tested above USEPA HA levels" (USEPA, 2016a; USEPA, 2016b).

4.2 Goals of the Study

The following goals were established for this SI:

- 1) Determine the presence or absence of PFOA, PFOS, and PFBS at or above SLs.
- 2) Develop information to potentially eliminate a release from further consideration because it is determined that it poses no significant threat to human health or the environment.
- Determine the potential need for a removal action.

- 4) Collect data to better characterize the release areas for more effective and rapid initiation of an RI
- 5) Identify within 4 miles of the installation other potential PFAS sources (fire stations, major manufacturers, other DoD facilities) and receptors, including both groundwater and surface water receptors, to determine whether the ARNG is the likely source of PFAS, or whether there is an off- facility source of PFAS responsible for installation detections of PFAS (USEPA, 2005).
- 6) Determine whether a potentially complete pathway exists between the source and potential receptors and whether ARNG is the likely source of the contamination.

4.3 Information Inputs

Primary information inputs included:

- PA for FTWHH, Montana (AECOM, 2018c)
- Groundwater and soil samples collected in accordance with the Site Specific Uniform Federal Policy (UFP)-Quality Assurance Project Plan (QAPP) Addendum (AECOM, 2019)
- Field data collected during the two SI mobilizations, including groundwater elevation and water quality parameters measured at the time of sampling.

4.4 Study Boundaries

The scope of the SI sampling approach was bounded by the property limits of the facility (**Figure 2-1**). Offsite sampling was not included in the scope of this SI; however, residential drinking water sampling was performed downgradient of FTWHH to determine if a complete drinking water pathways exists.

4.5 Analytical Approach

Samples were analyzed by Gulf Coast Analytical Laboratories, LLC (GCAL) during the first SI mobilization and Pace Analytical Gulf Coast during the second SI mobilization (GCAL acquired by Pace). The lab is accredited under the DoD Environmental Laboratory Accreditation Program (DoD ELAP; Accreditation Number 74960) and the National Environmental Laboratory Accreditation Program (NELAP; Certificate Number 01955). Data were compared to applicable SLs and decision rules as defined in the SI QAPP Addendum (AECOM, 2019). These rules governed response actions based on the results of the SI sampling effort.

The decision rules described in the **Worksheet #11** of the SI QAPP Addendum identify actions based on the following:

Groundwater:

- Is there a human receptor within 4 miles of the site?
- What is the concentration of PFOA, PFOS, and PFBS at the potential release area?
- What is the concentration of PFOA, PFOS, and PFBS at the facility boundary upgradient and downgradient of the potential release areas?
- What does the conceptual site model (CSM) suggest in terms of source, pathway and receptor?

Soil:

- What is the concentration of PFOA, PFOS, and PFBS in shallow surface soil (0 to 2 feet bgs)?
- What is the concentration of PFOA, PFOS, and PFBS constituents in deep soil (15 to 42 feet bgs) (i.e., capillary fringe)?
- What does the CSM suggest in terms of source, pathway, and receptor?

Soil and groundwater samples were collected from each of the potential release areas. Groundwater was encountered at approximately 14 to 49 feet bgs.

4.6 Data Usability Assessment

The Data Usability Assessment (DUA) is an evaluation at the conclusion of data collection activities that uses the results of both data verification and validation in the context of the overall project decisions or objectives. Using both quantitative and qualitative methods, the assessment determines whether project execution and the resulting data have met installation-specific DQOs. Both sampling and analytical activities are considered to assess whether the collected data are of the right type, quality, and quantity to support the decision-making (DoD, 2018a; DoD, 2018b; USEPA, 2017).

Data quality indicators (DQIs) (Precision, Accuracy, Representativeness, Comparability, Completeness and Sensitivity) are important components in assessing data usability. These DQIs were evaluated in the subsequent sections and demonstrate that the data presented in this SI report are of high quality. Although the SI data are considered reliable, some degree of uncertainty can be associated with the data collected. Specific factors that may contribute to the uncertainty of the data evaluation are described below. The Data Validation Report (**Appendix A**) presents explanations for all qualified data in greater detail.

4.6.1 Precision

Precision is the degree of agreement among repeated measurements of the same characteristic on the same sample or on separate samples collected as close as possible in time and place. Field sampling precision is measured with the field duplicate relative percent differences (RPD); laboratory precision is measured with calibration verification, internal standard recoveries, laboratory control spike (LCS) and matrix spike (MS) duplicate RPD.

Injection internal standards were added by the laboratory during sample injection to measure relative responses of target analytes and used to correct for bias associated with interference or losses during injection. Field sample AOI2-HA2-0-2 displayed injection internal standard area counts less than the lower quality control (QC) limit of 50% for M2PFDA, M2PFHxA, M2PFOA, and M4PFOS. The associated field sample results were positive and were qualified "J+". These anomalies are considered minor, and the results are usable as qualified but should be considered as estimated values with a positive bias.

Extraction internal standards were added by the laboratory during sample extraction to measure relative responses of target analytes and used to correct for bias associated with matrix interferences and sample preparation efficiencies, injection volume variances, mass spectrometry ionization efficiencies, and other associated preparation and analytical anomalies. Several field samples displayed extraction internal standard percent recoveries associated with multiple analytes that were outside the QC limits. The positive field sample results associated with low extracted internal standard (EIS) percent recoveries were qualified "J-", while those associated with high EIS percent recoveries were qualified "J-". The non-detect field sample results associated with EIS percent recoveries outside the QC limits were qualified "UJ". These

anomalies are considered minor, and the results are usable as qualified but should be considered as an estimated value.

Calibration verifications were performed routinely to ensure that instrument responses for all calibrated analytes were within established QC criteria. All calibration verifications were within the project established precision limits presented in the SI QAPP Addendum (AECOM, 2019).

LCS/LCS duplicate (LCSD) pairs were prepared by addition of known concentrations of each analyte in a matrix-free media known to be free of target analytes. LCS/LCSD pairs were analyzed for every analytical batch to demonstrate the ability of the laboratory to detect similar concentrations of a known quantity in matrix-free media. The LCS/LCSD pairs were within the project established precision limits presented in the SI QAPP Addendum (AECOM, 2019).

MS/MS duplicate (MSD) samples were prepared, analyzed, and reported for all preparation batches. MS/MSD samples demonstrated that the analytical system was in control for the matrix being tested. MS/MSD samples were submitted to the laboratory for analysis at a rate of 5%. The MS/MSD pairs were within the project established precision limits presented in the SI QAPP Addendum (AECOM, 2019).

Field duplicate samples were collected at a rate of 10% to assess the overall sampling and measurement precision for this sampling effort. The field duplicate samples were analyzed for PFAS and general chemistry parameters. The field duplicate samples were within the project established precision limits presented in the SI QAPP Addendum (AECOM, 2019).

4.6.2 Accuracy

Accuracy is a measure of confidence in a measurement. The smaller the difference between the measurement of a parameter and its "true" or expected value, the more accurate the measurement. The more precise or reproducible the result, the more reliable or accurate the result. Accuracy is measured through percent recoveries in the LCS/LCSD, MS/MSD, and surrogates.

LCS/LCSD samples were prepared by addition of known concentrations of each analyte in a matrix free media known to be free of target analytes. LCS/LCSD samples were analyzed for every analytical batch and demonstrated that the analytical system was in control during sample preparation and analysis, with one exception. The LCS/LCSD prepared in QC batch 661091 displayed a percent recovery for perfluorotridecanoic acid (PFTrDA) greater than the upper QC limit of 130% at 149% in the LCS and 154% in the LCSD. The associated field sample results were non-detect; no data qualifying action was required.

MS/MSD samples were prepared, analyzed, and reported at a rate of 5%. MS/MSD samples demonstrated that the analytical system was in control for the matrix being tested, with one exception. The MS/MSD performed on parent sample AOI2-SS4-0-2 displayed a percent recovery for PFOS greater than the upper QC limit of 130% at 187% in the MS. The parent sample result was positive and was qualified "J+". This anomaly is considered minor, and the result is usable as qualified but should be considered as an estimated value with a positive bias. The MS/MSD performed on parent sample AOI2-MW1 displayed MSD percent recoveries less than the lower QC limit of 70% for perfluorohexanesulfonic acid (PFHxS) and perfluorohexanoic acid (PFHxA) at 61% and 68%, respectively. The parent sample results were positive and were flagged "J-". These anomalies are considered minor, and the results are usable as qualified but should be considered as estimated values with a positive bias. The MS/MSD performed on parent sample AOI1-MW3-GW displayed percent recoveries greater than the upper QC limit for PFHxS at 133% in the MS and 140% in the MSD. The associated parent sample and field duplicate results were positive and were qualified "J+".

4.6.3 Representativeness

Representativeness qualitatively expresses the degree to which data accurately reflect site conditions. Factors that affect the representativeness of analytical data include appropriate sample population definitions, proper sample collection and preservation techniques, analytical holding times, use of standard analytical methods, and determination of matrix or analyte interferences.

Relating to the use of standard analytical methods, the laboratory followed the method as established in PFAS via liquid chromatography with tandem mass spectrometry (LC/MS/MS) compliant with DoD Quality Systems Manual (QSM) 5.1 Table B-15, including the specific preparation requirements (i.e. ENVI-Carb or equivalent used), mass calibration, spectra, all the ion transitions identified in Table B-15 were monitored, standards that contained both branch and linear isomers when available were used, and isotopically labeled standards were used for quantitation.

Field QC samples were collected to assess the representativeness of the data collected. Field duplicates were collected at a rate of 10% for all field samples, while MS/MSD samples were collected at a rate of 5%. Field sample FH-02-101120 was re-extracted and reanalyzed outside of holding time due to an EIS anomaly. The re-extracted results were qualified "J" and are recommended to be retained within the data set. Several soil samples were submitted for pH analysis. The technical holding time for pH analysis is "immediate"; the associated results were qualified "J". All preservation techniques were followed by the field staff, and all technical and analytical holding times were met by the laboratory. The laboratory used approved standard methods in accordance with the SI QAPP Addendum (AECOM, 2019) for all analyses.

Instrument blanks and method blanks were prepared by the laboratory in each batch as a negative control. Several PFAS instrument blanks and method blanks displayed detections greater than the detection limit for multiple target analytes. In total, 110 field sample results were qualified "U" during data validation due to associated detections in instrument and/or method blanks. The reported field sample result values were adjusted to be equal to the level of detection (LOD); the LOD was elevated to the concentration of the blank detection in instances where the blank concentration was greater than the LOD. The results are usable as qualified but should be considered false positives and treated as non-detect.

Equipment blanks and field blanks were also collected for groundwater and soil samples. Equipment blank AOI-MW3-EB displayed a detection greater than the detection limit for perfluorobutanoic acid (PFBA) at 16.5 ng/L. The positive associated field sample results were greater than five times the concentration in the equipment blank; therefore, no data qualifying action was required. The field blank sample FIELD BLANK displayed a detection greater than the detection limit for PFOS at 1.62 ng/L. The field blank result was associated with an instrument blank detection within five times the blank concentration and was qualified "U". The qualified field blank result should be considered as false positive and treated as non-detect; no data qualifying action was taken based on the qualified field blank result. Equipment blank FTWHH-ERB-03 in QC batch 695178 displayed concentrations greater than the detection limit for 6:2 fluorotelomer sulfonate (6:2 FTS). The field sample results associated with the equipment blank were either non-detect, or previously qualified due to a method blank contamination; no further data qualifying action was required. The field blank FTWHH-FRB in QC batch 695178, displayed concentrations greater than the detection limit for 6:2 FTS. The associated field sample results were greater than five times the concentration found in the blank detection; no data qualifying action was required.

A sample of the water used for decontamination of the drill rig was collected in advance of the field effort. The drill rig decontamination sample FTWHH-DECON displayed non-detect results for all target analytes. Based on the sample results, the potable water source was deemed acceptable for use during the investigation for decontamination of drilling equipment and during well installation.

Overall, the data are usable for evaluating the presence or absence of PFAS at the facility. Sufficient usable data were obtained to meet the objectives of the SI and to complete the risk assessment.

4.6.4 Comparability

Comparability is the extent to which data from one study can be compared directly to either past data from the current project or data from another study. Using standardized sampling and analytical methods, units of reporting, and site selection procedures help ensure comparability. Standard field sampling and typical laboratory protocols were used during the SI and are considered comparable to ongoing investigations.

4.6.5 Completeness

Completeness is a measure of the amount of valid data obtained from a measurement system compared to the amount of data expected under normal conditions. The laboratory provided data meeting system QC acceptance criteria for all samples tested. Project completeness was determined by evaluating the planned versus actual quantities of data. Percent completeness per parameter is as follows:

- PFAS in groundwater via LC/MS/MS compliant with QSM 5.1 Table B-15 at 100%
- PFAS in soil via LC/MS/MS compliant with DoD QSM 5.1 Table B-15 at 100%
- pH in soil by USEPA Method 9045D at 100%
- Total organic carbon (TOC) by USEPA Method 9060 at 100%

4.6.6 Sensitivity

Sensitivity is the capability of a test method or instrument to discriminate between measurement responses representing different levels (e.g., concentrations) of a variable of interest. Examples of QC measures for determining sensitivity include laboratory fortified blanks, a method detection limit (MDL) study, and calibration standards at the level of quantitation (LOQ). In order to meet the needs of the data users, project data must meet the measurement performance criteria for sensitivity and project LOQs specified in the SI QAPP Addendum (AECOM, 2019). The laboratory provided the requested MDL studies and provided applicable calibration standards at the LOQ. In order to achieve the DQOs for sensitivity outlined in the SI QAPP Addendum (AECOM, 2019), the laboratory reported all field sample results at the lowest possible dilution. Additionally, any analytes detected below the LOQ and above the MDL were reported and qualified "J" as estimated values by the laboratory.

5. Site Inspection Activities

This section describes the environmental investigation and sampling activities that occurred as part of the SI. The SI sampling approach was based on the findings of the PA and implemented in accordance with the following approved documents.

- Final Site Inspection Programmatic Uniform Federal Policy-Quality Assurance Project Plan dated March 2018 (AECOM, 2018a)
- Final Programmatic Accident Prevention Plan dated July 2018 (AECOM, 2018b)
- Final Preliminary Assessment Report, Fort William Henry Harrison, Montana dated August 2018 (AECOM, 2018c)
- Final Site Safety and Health Plan, Fort William Henry Harrison, Montana dated October 2018 (AECOM, 2018d)
- Final Site Inspection Uniform Federal Policy-Quality Assurance Project Plan Addendum, Fort William Henry Harrison, Montana dated January 2019 (AECOM, 2019)
- Final Supplemental Site Inspection Uniform Federal Policy-Quality Assurance Project Plan Addendum, Fort William Henry Harrison, Montana dated October 2020 (AECOM, 2020)

SI field activities were conducted in two mobilizations. The first mobilization included permanent groundwater monitoring well installation, development, and sampling; surface and subsurface soil sampling; and groundwater sampling from existing wells from 10 to 20 February 2019 and from 19 to 31 May 2019. The second mobilization included permanent groundwater monitoring well installation, development, and sampling; surface and subsurface soil sampling; and groundwater sampling from existing wells from 5 to 15 October 2020. Field activities were conducted in accordance with the SI QAPP Addendum and Supplemental SI QAPP Addendum (AECOM, 2019; AECOM, 2020), except as noted in **Section 5.9**.

To fulfill the project DQOs set forth in the approved the SI QAPP Addendum and Supplemental SI QAPP Addendum (AECOM, 2019; AECOM, 2020), samples were collected and analyzed for a subset of 18 PFAS by LC/MS/MS compliant with QSM 5.1 Table B-15 to fulfill the project DQOs:

Mobilization 1 -

- 47 soil grab samples from 27 boring locations; and
- 15 groundwater samples, six from new monitoring well locations, eight from existing monitoring well locations, and one from an irrigation well location.

Mobilization 2 -

- 30 soil grab samples from 27 boring locations; and
- 15 groundwater samples, five from new monitoring well locations and ten from existing monitoring well locations.

Figures 5-1 and **5-2** provide the sample locations for all media across the facility for Mobilization 1 and 2, respectively. **Table 5-1** presents all samples collected for each media during Mobilization 1 and 2, respectively. Daily reports were completed throughout both SI activities, which are provided in **Appendix B1**. Additionally, a photographic log of field activities is provided in **Appendix C**.

5.1 Pre-Investigation Activities

In preparation for the SI field activities, project team members participated in a Technical Project Planning (TPP) meeting, performed utility clearance, and sampled decontamination source water, each of which is discussed in more detail below.

5.1.1 Technical Project Planning

The USACE TPP Process, EM 200-1-2 (USACE, 2016) defines four phases to project planning: 1.) defining the project phase; 2.) determining data needs; 3.) developing data collection strategies; and 4.) finalizing the data collection plan. The process encourages stakeholder involvement in the SI, beginning with defining overall project objectives, including quantitative and qualitative DQOs, and formulating a sampling approach to address the AOIs identified in the PA.

TPP Meeting 1 and 2 for Mobilization 1 were held on 8 November 2018, prior to SI field activities. Meeting minutes are provided in **Appendix D**. TPP meetings 1 and 2 were conducted in general accordance with EM 200-1-2 (USACE, 2016).

The stakeholders for this SI include the ARNG, MTARNG, USACE, MTDEQ, and the VA, and they were provided the opportunity to make comments on the technical sampling approach and methods in the TPP 2 meeting. The outcome of TPP meetings 1 and 2 were memorialized in the SI QAPP Addendum (AECOM, 2019). Future TPP meetings will provide an opportunity to discuss the results and findings, and future actions, where warranted.

No formal TPP Meeting 1 and 2 was held for Mobilization 2 given the scope followed many of the same procedures outlined in the SI QAPP Addendum. However, a call was held on 22 September 2020 with the stakeholders (ARNG, MTARNG, USACE, and MTDEQ) to discuss the proposed sampling locations and MTDEQ comments on the Supplemental SI QAPP, which were provided before the call.

5.1.2 Utility Clearance

Utility clearance was conducted by Montana811 and facilitated by MTARNG. MTARNG contacted Montana811 one-call utility clearance contractor to notify them of intrusive work. AECOM field staff were onsite during the utility locate. Additionally, the first 5 feet of each boring were advanced using an air knife and hand augering to verify utility clearance in shallow subsurface where utilities would typically be encountered.

5.1.3 Source Water and PFAS Sampling Equipment Acceptability

A sample from a local potable water source at FTWHH was collected on 8 September 2018, prior to Mobilization 1, and analyzed for PFAS via LC/MS/MS compliant with DoD QSM 5.1 Table B-15. The potable water source at FTWHH is supplied by the City of Helena. The results of the potable well sample are provided in **Appendix G**. A discussion of the results is presented in **Section 4.6.3**. The same water source was used during Mobilization 2.

All materials that were used within the sampling zone were confirmed as acceptable for use in the PFAS sampling environment. The checklist of acceptable materials for use in the PFAS sampling environment is provided in PQAPP Appendix C, Table 1 (AECOM, 2018a). Prior to the start of field work each day, a PFAS Sampling Checklist was completed as an additional layer of control. The checklist served as a daily reminder to each field team member regarding the allowable materials within the sampling environment.

5.2 Soil Borings and Soil Sampling

Soil borings and sampling were performed during both Mobilization 1 and 2. During Mobilization 1, soil samples were collected from boreholes drilled by one of three methods: 1) air knifing, 2) hand augering, or 3) rotosonic drilling. In February 2019, when the ground was frozen, the surface soil and shallow subsurface samples were collected using an air knife, and in May 2019, during warmer weather, surface and shallow subsurface samples were collected with a hand auger. Deep subsurface soil samples collected from well borings were collected using a Boart Longyear LS250 minisonic drill rig. Three discrete soil samples were collected from the sonic well borings: the first from 0 to 2 feet bgs, the second from the mid-point between the surface and the groundwater table, and the third from approximately 1 foot above the groundwater table. The Mobilization 1 and 2 SI boring locations are shown on **Figure 5-1**, Mobilization 2 SI boring locations are shown on **Figure 5-2**, and boring depths for both mobilizations are provided **Table 5-1**. The soil boring locations were selected based on the AOI information as agreed on through TPP and SI QAPP Addendum review.

During Mobilization 2, soil samples were collected from boreholes drilled by one of three methods: 1) air knifing, 2) hand augering, or 3) hollow stem auger (HSA). Surface and shallow subsurface soil samples were collected as described during Mobilization 1. Deep subsurface soil samples were collected from well borings using a CME-75 HSA rig with 18-inch split-spoons.

The soil cores were logged for lithological descriptions by a field geologist using the Unified Soil Classification System (USCS). A photoionization detector (PID) was used to screen the breathing zone during boring activities as part of personal safety requirements. Observations and measurements were recorded on sampling forms (**Appendix B2**) and in a non-treated field logbook (i.e., composition notebook). Depth interval, recovery thickness, PID concentrations, moisture, relative density, color (using a Munsell soil color chart), and texture (using the USCS) were recorded. The boring logs are provided in **Appendix E**.

Each sample was collected into laboratory-supplied PFAS-free high-density polyethylene (HDPE) bottles and labeled using a PFAS-free marker or pen. Samples were packaged on ice and transported via Federal Express under standard chain-of-custody (COC) procedures to the laboratory and analyzed for PFAS via LC/MS/MS compliant with DoD QSM 5.1 Table B-15, TOC, (USEPA Method 9060A) and pH (USEPA Method 9045D) in accordance with the SI QAPP Addendum (AECOM, 2019). For cases in which non-dedicated sampling equipment was used, such as a stainless-steel scoop and mixing bowl used for the 0 to 2 feet bgs soil samples, equipment blank samples were collected and analyzed for the same parameters as the soil samples.

Field duplicate samples were collected at a rate of 10% and analyzed for the same parameters as the accompanying samples. MS/MSDs were collected at a rate of 5% and analyzed for the same parameters as the accompanying samples. A temperature blank was placed in each cooler to ensure that samples were preserved at or below 4 degrees Celsius (°C) during shipment.

5.3 Permanent Well Installation and Groundwater Sampling

Permanent monitoring wells were installed during both Mobilization 1 and 2. Six permanent groundwater monitoring wells were installed during Mobilization 1, and five were installed during Mobilization 2. The wells were installed at locations within or downgradient of potential PFAS release areas. Additionally, the new well locations assisted with the understanding of groundwater flow direction at the facility.

Boreholes were advanced using the drilling methods described above and used to install 2-inch diameter monitoring wells. The monitoring wells were constructed with Schedule 40 polyvinyl chloride (PVC), flush threaded 10-feet sections of riser, 0.010-inch slotted well screen, and a

threaded bottom cap. A filter pack of 20/40 silica sand was installed in the annulus around the well screen to a minimum of 2-feet above the well screen. A 2-feet thick bentonite seal was placed above the filter sand and hydrated with distilled water. Bentonite grout was placed in the well annulus from the top of the bentonite seal to ground surface during Mobilization 1. Bentonite chips were used during Mobilization 2. The bentonite grout/chips were allowed to set for 24-hours prior to well completion in accordance with the SI QAPP Addendum and Supplemental SI QAPP Addendum (AECOM, 2019; AECOM, 2020). The screen interval of each of the groundwater monitoring wells installed during Mobilization 1 and 2 are provided in **Table 5-2**.

The newly installed monitoring wells were developed no sooner than 24 hours following installation by pumping and surging using a variable speed submersible pump. Development of wells was completed in accordance with the SI QAPP Addendum and Supplemental SI QAPP Addendum (AECOM, 2019; AECOM, 2020).

5.4 Groundwater Sampling from Existing Wells

Groundwater samples were collected from newly installed and existing monitoring wells during Mobilization 1 and 2. Samples from newly installed wells were collected no sooner than 24 hours following development. All samples were collected via low-flow sampling methods using a bladder pump (with a disposable polytetrafluoroethylene bladder) with disposable PFAS-free, HDPE tubing. New tubing and bladders were used at each well, and the pumps were decontaminated between each well. The wells were purged at a rate determined in the field to reduce draw down prior to sampling. Water quality parameters (e.g., temperature, specific conductance, pH, dissolved oxygen [DO], turbidity, and oxidation-reduction potential [ORP]) were measured using a water quality meter and recorded on the field sampling form (Appendix B2). Water levels were measured to the nearest 0.01 inch and recorded. Additionally, a subsample of each groundwater sample was collected in a separate container and a shaker test was completed to identify if there was any foaming. No foaming was noted in any of the groundwater samples. During Mobilization 1, the Pump House system was flushed and sampled for 15 minutes prior to collecting the groundwater sample. The location of wells sampled during Mobilization 1 are provided in Figure 5-1, Mobilization 2 in Figure 5-2, and the screen interval of each of the groundwater monitoring wells is provided in **Table 5-2**.

Each sample was collected into laboratory-supplied PFAS-free HDPE bottles and labeled using a PFAS-free marker or pen. Samples were packaged on ice, transported via Federal Express under standard COC procedures to the laboratory, and analyzed for PFAS in accordance with the SI QAPP Addendum and Supplemental SI QAPP Addendum (AECOM, 2019; AECOM, 2020).

Field duplicate samples were collected at a rate of 10% and analyzed for the same parameters as the accompanying samples. MS/MSD were collected at a rate of 5% and analyzed for the same parameters as the accompanying samples. FRBs accompanied each cooler containing samples for PFAS analysis and were analyzed for select PFAS. A temperature blank was placed in each cooler to ensure that samples were preserved at or below 4 °C during shipment.

5.5 Synoptic Water Level Measurements

A synoptic groundwater gauging event was performed on 30 May 2019 and 13 October 2020. Water level measurements were taken from the northern side of the well casing. A groundwater flow contour map is provided in **Figure 2-4** and **Figure 2-5**. Depth to water readings and calculated groundwater elevation data from both synoptic rounds are provided in **Table 5-3**.

5.6 Surveying

The northern side of each well casing was surveyed by Montana-Licensed land surveyor following guidelines provided in the standard operating procedures provided in the SI QAPP Addendum

and Supplemental SI QAPP Addendum (AECOM, 2019; AECOM, 2020). Survey data from the newly installed wells were collected on 24 July 2019 and 14 October 2020 in the Montana State Plane North American Datum of 1983 and North American Vertical Datum of 1988. The surveyed well data is provided in **Appendix B3**.

5.7 Investigation Derived Waste

Soil investigation-derived waste (IDW) (i.e., soil cuttings) and liquid IDW (purge and decontamination water) generated during the SI activities were containerized in 55-gallon drums for future disposal by ARNG. The soil and liquid IDW was not sampled and assumes the PFAS characteristics of the associated soil samples collected from that source location.

Other solids such as spent personal protective equipment (PPE), plastic sheeting, tubing, rope, unused monitoring well construction materials, and other environmental media generated during the field activities were disposed of at a licensed solid waste landfill.

5.8 Laboratory Analytical Methods

Samples were analyzed for PFAS via LC/MS/MS compliant with QSM 5.1 Table B-15 by GCAL/Pace Analytical Gulf Coast in Baton Rouge, Louisiana, a DoD ELAP and NELAP certified laboratory. The 18 PFAS analyzed as part of the ARNG SI program include the following:

- 6:2 fluorotelomer sulfonate (6:2 FTS)
- 8:2 fluorotelomer sulfonate (8:2 FTS)
- N-ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)
- N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)
- Perfluorobutyrate (PFBA)
- Perfluorobutanesulfonic acid (PFBS)
- Perfluorodecanoic acid (PFDA)
- Perfluorododecanoic acid (PFDoA)
- Perfluoroheptanoic acid (PFHpA)

- Perfluorohexanoic acid (PFHxA)
- Perfluorohexanesulfonic acid (PFHxS)
- Perfluorononanoic acid (PFNA)
- Perfluorooctanoic acid (PFOA)
- Perfluorooctanesulfonic acid (PFOS)
- Perfluoropentanoic acid (PFPeA)
- Perfluorotetradecanoic acid (PFTeDA)
- Perfluorotridecanoic acid (PFTrDA)
- Perfluoroundecanoic acid (PFUdA)

Soil samples were also analyzed for TOC using USEPA Method 9060A, and pH by USEPA Method 9045D.

5.9 Deviations from SI QAPP Addendum

Deviations from the SI QAPP Addendum and Supplemental SI QAPP Addendum occurred based on field conditions and discussion between AECOM and ARNG. Deviations from both mobilizations are noted below:

 During Mobilization 1, the SI QAPP Addendum indicated that groundwater would be sampled at nine existing wells. The USGS Well was only a PVC stickup location to measure water level and not a properly installed well location; therefore, a groundwater sample was not collected from this location.

During Mobilization 2, two proposed sample locations within AOI 1 (AOI01-MW4 and AOI01-SS7) were within the Navy property boundary. The field team shifted these proposed locations to the east (on FTWHH property) and completed a Field Change Request for team approval before proceeding with sampling those locations. This has been included in Appendix B4.

Table 5-1 Samples by Medium Fort William Henry Harrison, MT Site Inspection Report

			Modified)	(V 0	(DS		
	Sample	Sample	PFAS USEPA Method 537 Modified)	roc USEPA Method 9060A)	рН (USEPA Method 9045D)	Grain Size (ASTM D422)	
Sample Identification	Collection Date	Depth (ft bgs)	PFAS (USEP	TOC (USE	Hd (USI	Grai (AS ⁻	Comments
SI Soil Samples AOI 1							
AOI1-SB1-0-2	2/13/2019	0-2	Х	Х	Х		110/1100
AOI1-SB1-20-22 AOI1-SB1-38-40	2/13/2019 2/13/2019	20-22 38-40	X	X X	X		MS/MSD
AOI1-3B1-30-40 AOI1-MW1-18-20	2/13/2019	18-20	^	_^	^	х	
AOI1-MW1-50-55	2/13/2019	50-55				Х	
AOI1-SB2-0-2	2/15/2019	0-2	Х	Х	Х		
AOI1-SB2-15-17	2/15/2019	15-17	X	X	X		
AOI1-SB2-28-30 AO1-MW2-35-37	2/15/2019 2/15/2019	28-30 35-37	Х	Х	Х	Х	
AOI1-SB3-0-2	2/20/2019	0-2	х	Х	х		
AOI1-SB3-18-20	2/20/2019	18-20	х	х	Х		
AOI1-SB3-18-20-DUP	2/20/2019	18-20	Х	х	Х		Field Duplicate
AOI1-SB3-38-40 AOI1-MW3-47-48	2/20/2019 2/20/2019	38-40 47-48	Х	Х	Х	v	
AOI1-WW3-47-48 AOI1-HA1-0-2	2/20/2019	0-2	х	х	x	Х	
AOI1-HA1-2-4	2/12/2019	2-4	X	X	X		
AOI1-HA2-0-2	2/12/2019	0-2	Х	Х	Х		
AOI1-HA2-2-4	2/12/2019	2-4	Х	Х	Х		
AOI1-SS1-0-2	2/14/2019	0-2	Х	Х	Х		
AOI1-SS1-0-2R AOI1-SS2-0-2	5/20/2019 2/14/2019	0-2 0-2	X X	X	X		
AOI1-SS3-0-2	2/14/2019	0-2	X	X X	X		MS/MSD
AOI1-SS4-0-2	2/14/2019	0-2	X	X	X		
AOI1-SS5-0-2	2/14/2019	0-2	Х	Х	Х		
AOI1-SS6-0-2	2/20/2019	0-2	х	Х	Х		
AOI01-04-SB-00-02	10/7/2020	0-2	l v	I			1
AOI01-04-SB-00-02 AOI01-04-SB-15-17	10/7/2020	15-17	X				
AOI01-04-SB-30-32	10/9/2020	30-32	X	х	Х		
AOI01-05-SB-00-02	10/6/2020	0-2	Х				
AOI01-05-SB-15-17	10/8/2020	15-17	Х	Х	Х		
AOI01-05-SB-15-17-DUP	10/8/2020	15-17 15-17		X	X		Field Duplicate
AOI01-05-SB-15-17-MS AOI01-05-SB-15-17-MSD	10/8/2020 10/8/2020	15-17		X X	X		MS MSD
AOI01-05-SB-30-32	10/8/2020	30-32	х	_^			MOD
AOI01-06-SB-00-02	10/6/2020	0-2	Х				
AOI01-06-SB-15-17	10/9/2020	15-17	Х				
AOI01-06-SB-30-32	10/9/2020	30-32	X				
AOI01-SS7-00-02 AOI01-SS8-00-02	10/7/2020 10/6/2020	0-2 0-2	X X				1
AOI01-SS9-00-02	10/6/2020	0-2	X				
AOI01-SS10-00-02	10/6/2020	0-2	Х				
AOI01-SS11-00-02	10/7/2020	0-2	х				
AOI01-SS12-00-02	10/7/2020	0-2	X				1
AOI01-SS13-00-02 AOI01-SS14-00-02	10/7/2020 10/7/2020	0-2 0-2	X X				1
AOI01-SS15-00-02	10/7/2020	0-2	X				
SI Soil Samples AOI 2							
AOI2-SB1-0-2	5/21/2019	0-2	Х	Х	Х		
AOI2-SB1-9-11	5/21/2019	9-11	X	X	X		
AOI2-SB1-18-20 AOI2-SB2-0-2	5/21/2019 5/23/2019	18-20 0-2	X X	X X	X		1
AOI2-SB2-0-2-DUP	5/21/2019	0-2	X	X	X		Field Duplicate
AOI2-SB2-8-10	5/23/2019	8-10	X	X	X		
AOI2-SB2-18-20		18-20	Х	Х	Х		
	5/23/2019						
AOI2-HA1-0-2	2/13/2019	0-2	Х	х	Х		
AOI2-HA1-2-4	2/13/2019 2/13/2019	0-2 2-4	х	х	х		MS/MSD
	2/13/2019	0-2					MS/MSD

Table 5-1 Samples by Medium Fort William Henry Harrison, MT Site Inspection Report

			(1				
			PFAS USEPA Method 537 Modified)				
			lool	€ €	6		
			37 N	roc USEPA Method 9060A)	oH USEPA Method 9045D)		
			d 5%)6 p)6 p		
			tho	tho	tho	8	
			Me	Me	Me	Grain Size (ASTM D422)	
	Sample	Sample) PA	PA	PA	S C	
	Collection	Depth	PFAS (USEP	TOC (USE	PH (USE	rair	
Sample Identification AOI2-HA3-0-2	Date 2/13/2019	(ft bgs) 0-2))	<u> </u>	Comments
AOI2-HA3-2-4	2/13/2019	2-4	X X	X	X		
AOI2-HA4-0-2	2/13/2019	0-2	X	X	X		
AOI2-HA4-2-4	2/13/2019	2-4	Х	Х	Х		
AOI2-HA5-0-2	2/13/2019	0-2	Х	Х	Х		
AOI2-HA5-2-4 AOI2-HA6-0-2	2/13/2019 2/12/2019	2-4 0-2	X	X	X		
AOI2-HA6-2-4	2/12/2019	2-4	X X	X	X		
AOI2-HA6-2-4-DUP	2/12/2019	2-4	X	X	X		Field Duplicate
AOI2-SS1-0-2	5/20/2019	0-2	Х	Х	Х		·
AOI2-SS2-0-2	5/20/2019	0-2	Х	Х	Х		E: 11B ::
AOI2-SS2-0-2-DUP	5/20/2019	0-2	X	X	X		Field Duplicate
AOI2-SS3-0-2 AOI2-SS4-0-2	5/20/2019 5/20/2019	0-2 0-2	X X	X	X X		MS/MSD
AOI2-SS5-0-2	5/20/2019	0-2	X	X	X		WO/WOD
SSI Soil Samples AOI 2							
AOI02-03-SB-00-02	10/6/2020	0-2	Х	Х	Х		
AOI02-03-SB-00-02-DUP	10/6/2020	0-2	Х				Field Duplicate
AOI02-03-SB-00-02-MS AOI02-03-SB-00-02-MSD	10/6/2020	0-2 0-2	X				MSD
AOI02-03-SB-10-12	10/6/2020 10/10/2020	10-12	X				MSD
AOI02-03-SB-10-12-DUP	10/10/2020	10-12	X				Field Duplicate
AOI02-03-SB-25-27	10/10/2020	25-27	Х				
AOI02-SS6-00-02	10/6/2020	0-2	Х				
AOI02-SS7-00-02 AOI02-SS8-00-02	10/6/2020 10/6/2020	0-2 0-2	X				
SI Soil Samples AOI 3	10/0/2020	0-2	Х				
AOI3-SB1-0-2	5/22/2019	0-2	х	х	х		
AOI3-SB1-18-20	5/22/2019	18-20	Х	Х	Х		
AOI3-SB1-40-42	5/22/2019	40-42	Х	Х	Х		
AOI3-HA1-0-2 AOI3-HA1-0-4	2/12/2019	0-2 2-4	X	X	X		
SSI Soil Samples AOI 3	2/12/2019	2-4	Х	X	X		
AOI03-02-SB-00-02	10/6/2020	0-2	х				
AOI03-SS1-00-02	10/7/2020	0-2	Х				
AOI03-SS2-00-02	10/7/2020	0-2	Х				
AOI03-SS3-00-02	10/7/2020	0-2	X				
AOI03-SS4-00-02 AOI03-SS4-00-02-DUP	10/7/2020 10/7/2020	0-2 0-2	X				Field Duplicate
AOI03-SS5-00-02	10/7/2020	0-2	X	Х	Х		l leid Duplicate
SI Groundwater Samples							•
AOI1-MW1	5/28/2019	Mid-Screen	Х				
AOI1-MW2	5/29/2019	Mid-Screen	X				Field Dunli+-
AOI1-MW2-DUP AOI1-MW3	5/29/2019 5/25/2019	Mid-Screen Mid-Screen	X X				Field Duplicate
BH-02	5/28/2019	Mid-Screen	X				
FH-02	5/28/2019	Mid-Screen	X				
AOI2-MW1	5/29/2019	Mid-Screen	Х				
AOI2-MW2	5/30/2019	Mid-Screen	X				
MW-06 MW-06-DUP	5/29/2019 5/29/2019	Mid-Screen Mid-Screen	X X				Field Duplicate
MW-07	5/30/2019	Mid-Screen	×				i loid Dupiloate
MW-08	5/29/2019	Mid-Screen	X				
AOI3-MW1	5/29/2019	Mid-Screen	Х				
MW-10	5/29/2019	Mid-Screen	Х				
MW-11 OBTMW-01	5/30/2019 5/30/2019	Mid-Screen Mid-Screen	X X				
PH-1	5/30/2019	NA	X				
PH-2-DUP	5/30/2019	NA	X				Field Duplicate
SSI Groundwater Samples							
AOI1-MW1-GW	10/11/2020	53.0	Х			ĺ	I

Table 5-1 Samples by Medium Fort William Henry Harrison, MT Site Inspection Report

Sample Identification	Sample Collection Date	Sample Depth (ft bgs)	PFAS (USEPA Method 537 Modified)	TOC (USEPA Method 9060A)	pH (USEPA Method 9045D)	Grain Size (ASTM D422)	Comments
AOI1-MW2-GW	10/12/2020	38.5	х				
AOI1-MW3-GW	10/10/2020	45.0	Х				
AOI1-MW3-GW-DUP	10/10/2020	45.0	Х				Field Duplicate
AOI1-MW3-GW-MS	10/10/2020	45.0	Х				MS
AOI1-MW3-GW-MSD	10/10/2020	45.0	Х				MSD
AOI1-MW04-GW	10/14/2020	36.0	Х				
AOI1-MW05-GW	10/12/2020	40.0	Х				
AOI1-MW06-GW	10/13/2020	33.5	Х				
BH-02-101020	10/10/2020	31.0	Х				
FH-02-101120	10/11/1010	51.0	Х				
AOI2-MW1-GW	10/12/2020	35.0	Х				
AOI2-MW1-GW-DUP	10/12/2020	35.0	Х				Field Duplicate
AOI2-MW2-GW	10/13/2020	25.0	Х				
AOI2-MW03-GW	10/14/2020	36.0	Х				
MW-08-101120	10/11/2020	50.0	Х				
AOI3-MW1-GW	10/9/2020	56.5	Х				
AOI3-MW02-GW	10/13/2020	56.0	Х				
MW-11-100920	10/9/2020	52.0	Х				
Field Blank Samples							
AOI1-HA1-2-4-EB	2/13/2019		Х				Equipment Blank
AOI1-SS1-0-2-EB	2/14/2019		Х				Equipment Blank
AOI1-MW3-EB	2/16/2019		Х				Equipment Blank
AOI2-FRB	5/20/2016		Х				Field Blank
AOI3-SB1-0-2-EB	5/21/2019		Х				Equipment Blank
AOI2-SB1-0-2-EB	5/23/2019		Х				Equipment Blank
FTWHH-ERB-01	10/6/2020		Х				Equipment Blank
FTWHH-ERB-02	10/7/2020		Х				Equipment Blank
FTWHH-ERB-03	10/10/2020		Х				Equipment Blank
FTWHH-ERB-04	10/14/2020		Х				Equipment Blank
FTWHH-FRB-01	10/10/2020		Х				Field Blank

Notes:

AOI = Area of Interest

ASTM = American Standard Test Method

EB = equipment blank

ERB = equipment blank

FRB = field reagent blank

GW = groundwater

ft = feet

HA = hand auger

MS/MSD = matrix spike/ matrix spike duplicate

MW = monitoring well

NA = not applicable

PFAS = per- and polyfluoroalkyl substances

PH = Pump House

R = recollected

SB = soil boring

SS = surface soil

TOC = Total Organic Carbon

USEPA = United States Environmental Protection Agency

THIS PAGE INTENTIONALLY BLANK

Table 5-2 Monitoring Well Screen Intervals Fort William Henry Harrison, MT Site Inspection Report

Monitoring Well ID	Screen Interval
Well ID	(ft bgs)
AOI1-MW1	45-55
AOI1-MW2	30-40
AOI1-MW3	40-50
AOI1-MW4	28-38
AOI1-MW5	35-45
AOI1-MW6	27-37
AOI2-MW1	28-38
AOI2-MW2	20-30
AOI2-MW3	30-40
AOI3-MW1	48-58
AOI3-MW2	50-60
BH-02	29-34
FH-02	34.8-54.8
MW-05	29-39.2
MW-06	20-30
MW-07	29.1-39.1
MW-08	39.2-59.2
MW-10	59-79
MW-11	25-55
MW-12	35-55
OBTMW-01	20-50

Notes:

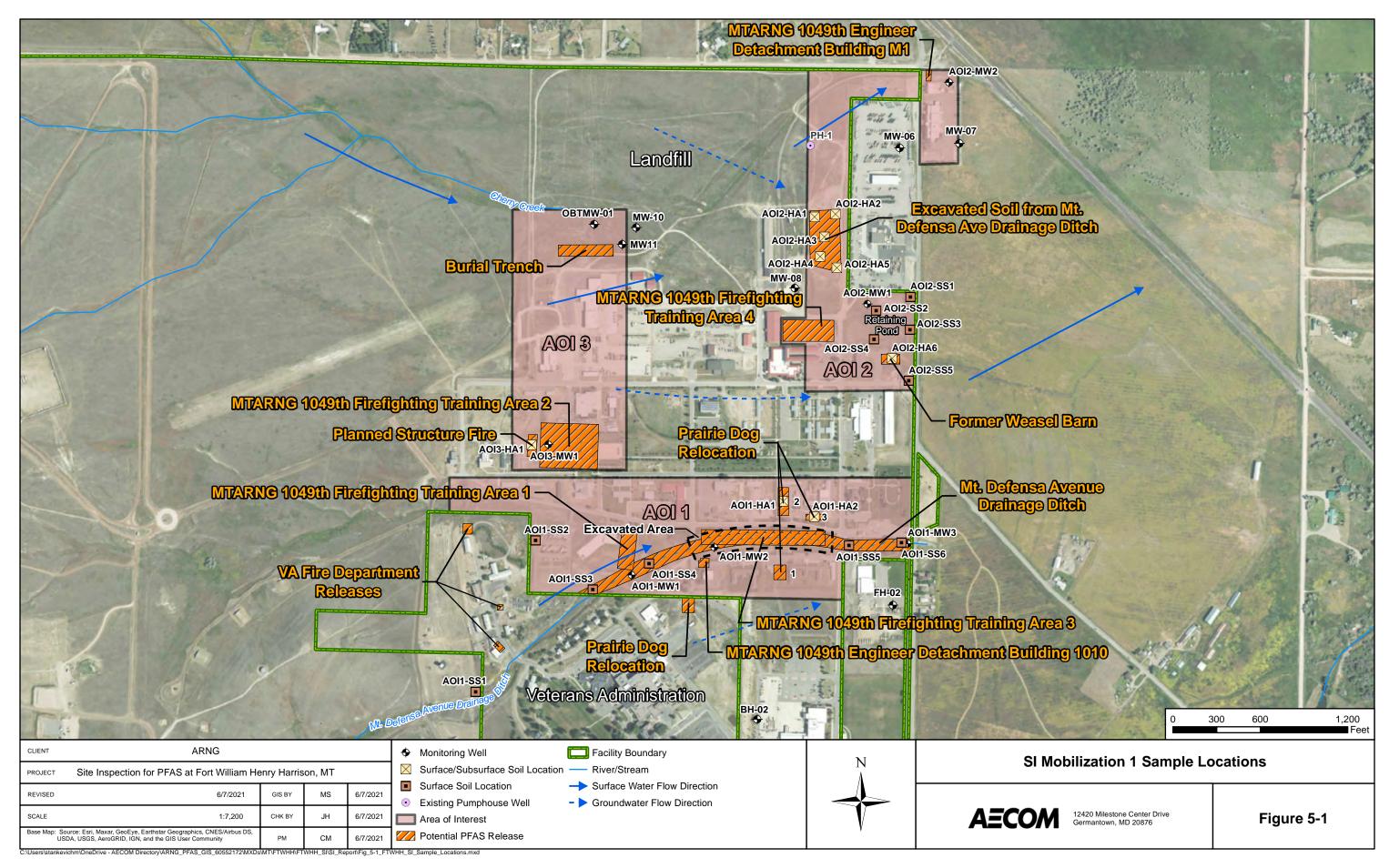
bgs = below ground surface

ft = feet

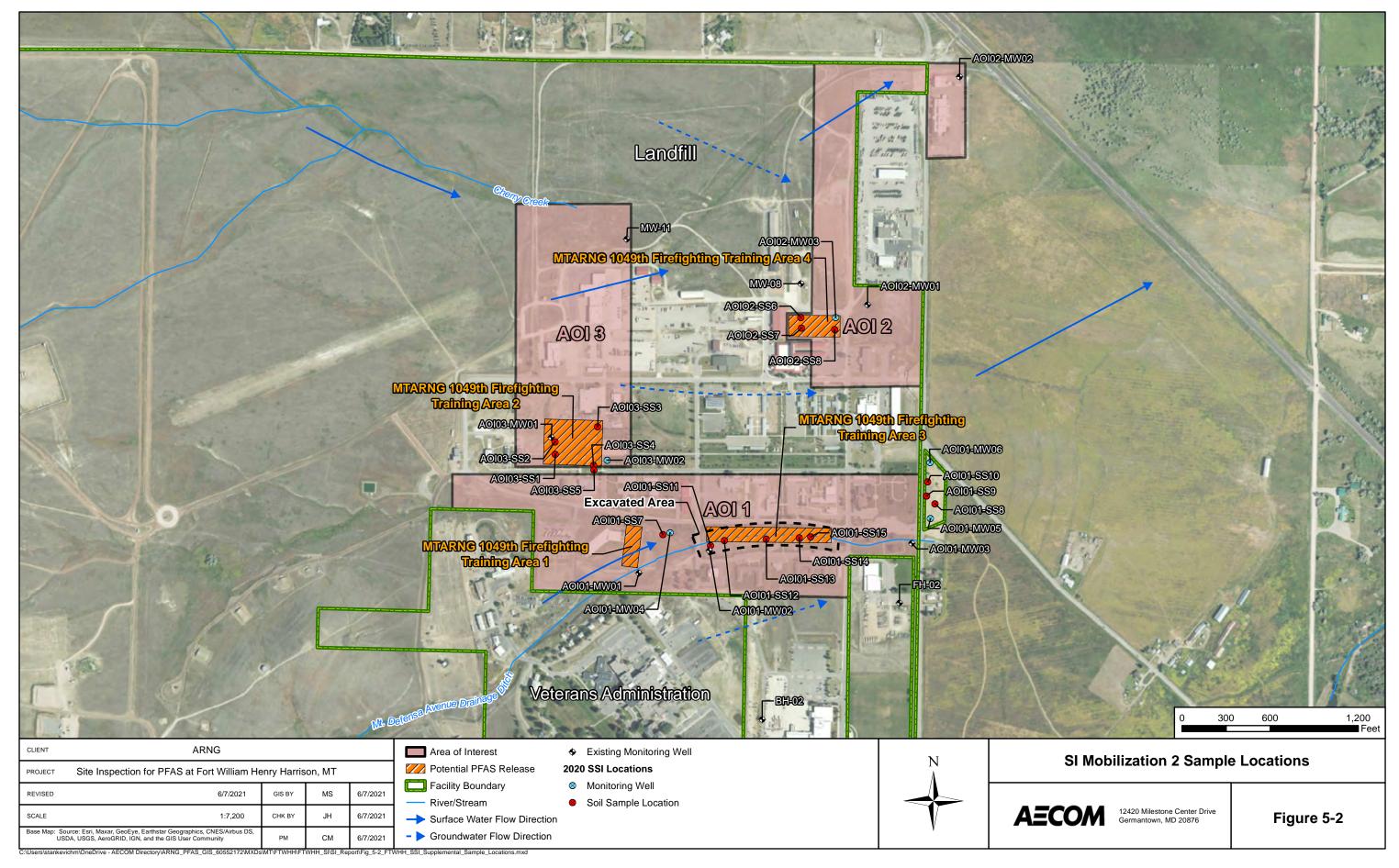
ID = identification

THIS PAGE INTENTIONALLY BLANK

Table 5-3 Groundwater Elevation Fort William Henry Harrison, MT Site Inspection Report


	Date	Top of Casing	Depth to Water	Groundwater				
Monitoring Well ID	Measured	Elevation (ft amsl)	(ft btoc)	Elevation (ft amsl)				
AOI1-MW1	5/30/2019	3985.92	31.25	3954.67				
AOI1-MW2	5/30/2019	3976.32	31.85	3944.47				
AOI1-MW3	5/30/2019	3948.75	32.44	3916.31				
BH-02	5/30/2019	3968.06	24.04	3944.02				
FH-02	5/30/2019	3954.95	34.17	3920.78				
AOI2-MW1	5/30/2019	3950.83	21.10	3929.73				
AOI2-MW2	5/30/2019	3946.64	14.23	3932.41				
MW-06	5/30/2019	3952.55	20.65	3931.90				
MW-07	5/30/2019	3948.40	16.44	3931.96				
MW-08	5/30/2019	3959.17	27.19	3931.98				
AOI3-MW1	5/30/2019	4003.43	42.87	3960.56				
MW-10	5/30/2019	3977.10	29.87	3947.23				
MW-11	5/30/2019	3981.19	27.81	3953.38				
OBTMW-01	5/30/2019	3982.56	27.90	3954.66				
AOI1-MW1	10/12/2020	3985.93	34.71	3951.22				
AOI1-MW2	10/12/2020	3976.33	33.80	3942.53				
AOI1-MW3	10/12/2020	3948.76	32.13	3916.63				
AOI1-MW4	10/12/2020	3975.46	29.40	3946.06				
AOI1-MW5	10/12/2020	3947.70	33.92	3913.78				
AOI1-MW6	10/12/2020	3948.09	29.82	3918.27				
BH-02	10/12/2020	3968.07	27.59	3940.48				
FH-02	10/12/2020	3954.95	34.43	3920.52				
AOI2-MW1	10/12/2020	3950.84	22.79	3928.05				
AOI2-MW2	10/12/2020	3946.65	17.33	3929.32				
AOI2-MW3	10/12/2020	3953.36	24.18	3929.18				
MW-05	10/12/2020	3954.99	25.54	3929.45				
MW-06	10/12/2020	3952.56	23.54	3929.02				
MW-07	10/12/2020	3948.41	19.39	3929.02				
MW-08	10/12/2020	3959.18	28.90	3930.28				
AOI3-MW1	10/12/2020	4003.44	43.93	3959.51				
AOI3-MW2	10/12/2020	3993.34	49.65	3943.69				
MW-10	10/12/2020	3977.13	30.11	3947.02				
MW-11	10/12/2020	3981.20	29.29	3951.91				
MW-12	10/12/2020	3980.48	36.56	3943.92				
OBTMW-01	10/12/2020	3982.57	29.65	3952.92				

Notes:


amsl = above mean sea level btoc = below top of casing

ft = feet

THIS PAGE INTENTIONALLY BLANK

THIS PAGE INTENTIONALLY BLANK

THIS PAGE INTENTIONALLY BLANK

6. Site Inspection Results

This section presents the analytical results of the SI for each AOI. The SLs used in this evaluation are presented in **Section 6.1**. A discussion of the results for each AOI is provided in **Sections 6.3** through **6.5**. **Table 6-2** through **Table 6-5** present PFAS results for samples with detections in soil and groundwater; only constituents detected in one or more samples are included. Tables that contain all results are provided in **Appendix F** and the laboratory reports are provided in **Appendix G**.

6.1 Screening Levels

The DoD has adopted a policy to retain facilities in the CERCLA process based on risk-based SLs for soil and groundwater, as described in a memorandum from the OSD dated 15 October 2019 (Assistant Secretary of Defense, 2019). The ARNG program under which this SI was performed follows this DoD policy. Should the maximum site concentration for sampled media exceed the SLs established in the OSD memorandum, the AOI will proceed to an RI, the next phase under CERCLA. The SLs apply to three compounds, PFOA, PFOS, and PFBS, for both soil and groundwater, as presented in **Table 6-1**.

All other results presented in this report are considered informational in nature and serve as an indication as to whether soil and groundwater contain or do not contain PFAS within the boundaries of the facility.

Analyte	Residential (Soil) (µg/kg) ^a 0-2 feet bgs	Industrial/ Commercial Composite Worker (Soil) (µg/kg) ^a 2-15 feet bgs	Tap Water (Groundwater) (ng/L)ª
PFOA	130	1,600	40
PFOS	130	1,600	40
PFBS	130,000	1,600,000	40,000

Table 6-1: Screening Levels (Soil and Groundwater)

Notes:

6.2 Soil Physicochemical Analyses

To provide basic soil parameter information, soil samples were analyzed for TOC and pH, which are important for evaluating transport through the soil medium. **Appendix F** contains the results of the TOC and pH sampling.

The data collected in this investigation will be used in subsequent investigations, where appropriate, to assess fate and transport of PFAS contaminants. According to the Interstate Technology Regulatory Council (ITRC), several important PFAS partitioning mechanisms include hydrophobic and lipophobic effects, electrostatic interactions, and interfacial behaviors. At relevant environmental pH values, certain PFAS are present as organic anions and are therefore relatively mobile in groundwater (Xiao et al., 2015) but tend to associate with the organic carbon fraction that may be present in soil or sediment (Higgins and Luthy 2006; Guelfo and Higgins, 2013). When sufficient organic carbon is present, organic carbon normalized distribution coefficients (Koc values) can help in evaluating transport potential, though other geochemical

a.) Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater and Soil using United States Environmental Protection Agency's (USEPA's) Regional Screening Level Calculator. HQ=0.1. 15 October 2019.

factors (for example, pH and presence of polyvalent cations) may also affect PFAS sorption to solid phases (ITRC, 2018).

6.3 AOI 1

This section presents the analytical results for soil and groundwater in comparison to SLs for AOI 1, which includes seven potential PFAS release areas: Black-Tailed Prairie Dog Relocation areas (three locations), MTARNG 1049th Engineer Detachment Building 1010, Mt. Defensa Avenue Drainage Ditch, 1049th Firefighting Training Area 1, and 1049th Firefighting Training Area 3. The detected compounds in soil and groundwater are summarized in **Tables 6-2** through **6-5**. The detections of PFOA and PFOS in soil and groundwater are presented on **Figures 6-1** through **6-6**.

6.3.1 AOI 1 Soil Analytical Results

Within the Mt. Defensa Avenue Drainage Ditch, soil was sampled at three intervals from soil borings locations AOI1-SB1 and AOI1-SB3 and one interval from surface locations AOI1-SS1 through AOI1-SS6. All PFOA, PFOS, and PFBS results were below SLs. PFOA concentrations ranged from non-detect to 0.122 J micrograms per Kilogram (μ g/Kg), which occurred at AOI1-SB3 in the shallow interval (0 to 2 feet bgs). PFOS concentrations ranged from non-detect to 2.23 μ g/Kg, which occurred at AOI1-SS5 in the shallow interval (0 to 2 feet bgs). PFBS concentrations ranged from non-detect to 0.012 J μ g/Kg, which occurred in AOI1-SB3 in the shallow interval (0 to 2 feet bgs). In the intermediate interval, PFOA concentrations were non-detect. PFOS concentrations ranged from 0.039 J μ g/Kg in AOI1-SB1 (20 to 22 feet bgs) to 0.526 J μ g/Kg in AOI1-SB3 (18 to 20 feet bgs). PFBS concentrations ranged from 0.00418 J μ g/Kg in AOI1-SB1 (20 to 22 feet bgs) to 0.021 J μ g/Kg in AOI1-SB3 (18 to 20 feet bgs). In the deep interval, PFOA and PFBS concentrations were non-detect. PFOS concentrations ranged from 0.014 J μ g/Kg in AOI1-SB1 (38 to 40 feet bgs) to 0.135 J μ g/Kg, in AOI1-SB3 (38 to 40 feet bgs). **Table 6-2** and **Table 6-4** summarize the detected compounds in soil. **Figure 6-1** and **Figure 6-2** present ranges of detections of PFOS and PFOA in soil.

Within the 1049th Engineer Detachment Building 1010 area, soil was sampled at three intervals from soil boring location AOI1-SB2. All PFOA, PFOS, and PFBS results were below SLs. PFOA was non-detect in the shallow interval (0 to 2 feet bgs). PFOS was detected at 0.751 J μ g/Kg and PFBS was detected at 0.104 J μ g/Kg. In the intermediate interval (15 to 17 feet bgs), PFOA was detected at 0.055 J μ g/Kg, PFOS was detected at 0.478 J μ g/Kg, and PFBS was detected at 0.142 J μ g/Kg. PFOA, PFOS, and PFBS were non-detect in the deep interval (28 to30 feet bgs). **Table 6-2** and **Table 6-4** summarize the detected compounds in soil. **Figure 6-1** and **Figure 6-2** present ranges of detections of PFOS and PFOA in soil.

Within in the Prairie Dog Relocation areas, soil was sampled at two intervals from hand auger locations AOI1-HA1 and AOI1-HA2. All PFOA, PFOS, and PFBS results were below SLs. PFOA and PFOS concentrations were all non-detect in the shallow interval (0 to 2 feet bgs) and intermediate interval (2 to 4 feet bgs). PFBS concentrations ranged from non-detect in AOI1-HA2 (2 to 4 feet bgs) to $0.00547 \, \text{J} \, \mu \text{g/Kg}$ in AOI1-HA2 (2 to 4 feet bgs). **Table 6-2** and **Table 6-3** summarize the detected compounds in soil. **Figure 6-1** and **Figure 6-2** present ranges of detections of PFOS and PFOA in soil.

Soil was sampled at three intervals from soil borings locations AOI01-04-SB through AOI01-06-SB and one interval from surface locations AOI1-SS8 through AOI1-SS10 at the FTWHH parcel of property located on the east side of Williams Street. PFOA, PFOS, and PFBS concentrations were non-detect.

Within in the 1049th Firefighting Training Area 1, surface soil was sampled from location AOI01-SS7. PFOA, PFOS, and PFBS results were below SLs. PFOA and PFBS concentrations were

non-detect. The PFOS concentration was $0.630 \text{ J} \mu\text{g/Kg}$, which occurred in the shallow interval (0 to 2 feet bgs). **Table 6-2** summarize the detected compounds in soil. **Figure 6-3** present the detections of PFOS in soil.

Within in the 1049th Firefighting Training Area 3, surface soil was sampled from locations AOI01-SS11 through AOI01-SS15 (0 to 2 feet bgs). All PFOA, PFOS, and PFBS results were below SLs. PFOA concentrations ranged from non-detect to 0.166 J μ g/Kg, which occurred in AOI1-SS11 (0 to 2 feet bgs). PFOS concentrations ranged from non-detect to 39.9 μ g/Kg, which occurred in AOI1-SS11 (0 to 2 feet bgs). PFBS concentrations ranged from non-detect to 1.08 μ g/Kg, which occurred in AOI1-SS11 (0 to 2 feet bgs). **Table 6-2** summarizes the detected compounds in soil. **Figure 6-3** and **Figure 6-4** present ranges of detections of PFOS and PFOA in soil.

6.3.2 AOI 1 Groundwater Analytical Results

PFOA, PFOS, and PFBS were detected in 13 of the 13 groundwater samples collected in AOI 1. All PFOA and PFBS results were below SLs. PFOA was detected in 12 of 13 samples and ranged in concentrations from non-detect to 13.5 ng/L (14.3 ng/L duplicate), which was detected in AOI1-MW3. PFOS was detected below the SLs at all well locations with the exception of AOI1-MW3. PFOS concentrations ranged from 2.61 J ng/L at BH-02 to 62.2 ng/L (61.6 ng/L duplicate) at AOI1-MW3. PFBS was detected in 12 of 13 samples and ranged in concentrations from non-detect (BH-02) to 34.1 ng/L (AOI1-MW3). The detected compounds are summarized in **Table 6-5**. **Figure 6-5** and **Figure 6-6** present the range of detections for PFOS and PFOA at the facility.

6.3.3 AOI 1 Conclusions

Based on the results of SI, PFOA, PFOS, and PFBS were detected in soil at AOI 1; however, the detected concentrations were below soil SLs. PFOA and PFBS were detected in groundwater at AOI 1, and PFOS exceeded SLs. Therefore, further evaluation at AOI 1 is warranted as part of an RI.

6.4 AOI 2

This section presents the analytical results for soil and groundwater in comparison to SLs for AOI 2, which includes four potential PFAS release areas: Former Weasel Barn, Excavated Soil from Mt. Defensa Ave Drainage Ditch, 1049th Engineer Detachment Building M1, and 1049th Firefighting Training Area 4. The detected compounds in soil and groundwater are summarized in **Tables 6-2** through **6-5**. The detections of PFOS and PFOA in soil and groundwater are presented on **Figures 6-1** through **6-6**.

6.4.1 AOI 2 Soil Analytical Results

Within the Former Weasel Barn area, soil was sampled at three intervals from soil boring location AOI2-SB1; two intervals from hand auger location AOI2-HA6; and one interval from surface locations AOI2-SS1 through AOI2-SS5. All PFOA, PFOS, and PFBS results were below SLs. PFOA concentrations ranged from non-detect to 0.271 J μ g/Kg, which occurred at AOI2-SB1 in the shallow interval (0 to 2 feet bgs). PFOS concentrations ranged from 0.181 J μ g/Kg in AOI2-SS3 (0 to 2 feet bgs) to 10.9 μ g/Kg in AOI2-HA6 (0 to 2 feet bgs). PFBS concentrations ranged from non-detect to 0.07 J μ g/Kg in AOI2-HA6 (0 to 2 feet bgs). In the intermediate interval, PFOA concentrations ranged from non-detect to 0.087 J μ g/Kg, which occurred at AOI2-HA6 (2 to 4 feet bgs). PFOS concentrations ranged from 0.046 J μ g/Kg in AOI2-BB1 (9 to 11 feet bgs) to 0.572 J μ g/Kg in AOI2-HA6 (2 to 4 feet bgs). PFBS concentrations ranged from non-detect to 0.036 J μ g/Kg, which was detected in AOI2-HA6 (2 to 4 feet bgs). In the deep interval, PFOS and PFBS were non-detect (AOI2-SB1). PFOS was detected at a concentration of 0.00678 J μ g/Kg (18 to 20 feet bgs). **Tables 6-2** through **6-4** summarize the detected compounds in soil. **Figure 6-1** and **Figure 6-2** present ranges of detections of PFOS and PFOA in soil.

Within the Excavated Soil from Mt. Defensa Ave Drainage Ditch area, soil was sampled at two intervals from hand auger locations AOI2-HA1 through AOI2-HA5. All PFOA, PFOS, and PFBS results were below SLs. In the shallow interval (0 to 2 feet bgs), PFOA concentrations ranged from non-detect to 0.126 J μ g/Kg, which occurred at AOI2-HA5. PFOS concentrations ranged from 0.086 J μ g/Kg in AOI2-HA2 (0 to 2 feet bgs) to 1.73 μ g/Kg in AOI2-HA5 (0 to 2 feet bgs). PFBS concentrations ranged from non-detect to 0.059 J μ g/Kg, which was detected in AOI2-HA3 (0 to 2 feet bgs). In the intermediate interval (2 to 4 feet bgs), concentrations of PFOA ranged from non-detect to 0.083 J μ g/Kg, which was detected in AOI2-HA4. PFOS concentrations ranged from non-detect to 1.92 μ g/Kg, which occurred at AOI2-HA5 (2 to 4 feet bgs). PFBS concentrations ranged from non-detect to 0.047 J μ g/Kg, which occurred in AOI2-HA5 (2 to 4 feet bgs). **Table 6-2** and **Table 6-3** summarize the detected compounds in soil. **Figure 6-1** and **Figure 6-2** present ranges of detections of PFOS and PFOA in soil.

Within the 1049th Engineer Detachment Building M1 area, soil was sampled at three intervals from soil boring location AOI2-SB2. All PFOA, PFOS, and PFBS results were below SLs. In the shallow interval (0 to 2 feet bgs), PFOA was detected at a concentration of 0.042 J μ g/Kg. PFOS was detected at a concentration of 4.31 J μ g/Kg (0 to 2 feet bgs). PFBS was non-detect. In the intermediate interval (2 to 11 feet bgs), PFOS and PFBS were non-detect. PFOS was detected at a concentration of 0.046 J μ g/Kg. In the deep interval (18 to 20 feet bgs), PFOA, PFOS, and PFBS were non-detect. **Tables 6-2** through **6-4** summarize the detected compounds in soil. **Figure 6-1** and **Figure 6-2** present ranges of detections of PFOS and PFOA in soil.

Within the 1049th Firefighting Training Area 4, soil was sampled at three intervals from soil boring location AOI02-03-SB and one interval from surface locations AOI02-SS6 through AOI02-SS8. All PFOA, PFOS, and PFBS results were below SLs. In the shallow interval (0 to 2 feet bgs), PFOA and PFBS concentrations were non-detect. PFOS concentrations ranged from non-detect to 0.807 J μ g/Kg, which occurred at AOI02-03-SB-DUP (0 to 2 feet bgs). In the intermediate and deep intervals, PFOA, PFOS, and PFBS were non-detect with the exception of a PFOS detection of 0.00678 J μ g/Kg in the deep interval of AOI2-03-SB (25 to 27 feet bgs). **Tables 6-2** through **6-4** summarize the detected compounds in soil. **Figure 6-3** and **Figure 6-4** present ranges of detections of PFOS and PFOA in soil.

6.4.2 AOI 2 Groundwater Analytical Results

PFOA, PFOS, and PFBS were detected in seven of nine groundwater samples collected in AOI 2. PFOS exceeded SLs at AOI2-MW1 (118 ng/L). PFOA concentrations ranged from non-detect to 14.6 ng/L (AOI2-MW1-DUP). PFOS concentrations ranged from non-detect to 118 ng/L (AOI2-MW1). PFBS concentrations ranged from non-detect to 27.3 ng/L (AOI2-MW1). The detected compounds are summarized in **Table 6-5**. **Figure 6-5** and **Figure 6-6** present the range of detections for PFOS and PFOA at the facility.

6.4.3 AOI 2 Conclusions

Based on the results of SI, PFOA, PFOS, and PFBS were detected in soil at AOI 2; however, the detected concentrations were below soil SLs. PFOA and PFBS were detected in groundwater at AOI 2 and PFOS exceeded SLs. Therefore, further evaluation at AOI 2 is warranted as part of an RI.

6.5 AOI 3

This section presents the analytical results for soil and groundwater in comparison to SLs for AOI 3, which includes two potential PFAS release area: Planned Structure Fire and 1049th Firefighting Training Area 2. The detected compounds in soil and groundwater are summarized in **Tables 6-2** through **6-5**. The detections of PFOA and PFOS in soil and groundwater are presented on **Figures 6-1** through **6-6**.

6.5.1 AOI 3 Soil Analytical Results

Within the Planned Structure Fire area, soil was sampled at three intervals from soil boring location AOI3-SB1 and two intervals from hand auger location AOI3-HA1. All PFOA, PFOS, and PFBS results were below SLs. In the shallow interval (0 to 2 feet bgs), PFOA concentrations ranged from non-detect to 0.473 J μ g/Kg, which occurred at AOI3-SB1. PFOS concentrations ranged from non-detect to 12.3 μ g/Kg, which was detected in AOI3-SB1 (0 to 2 feet bgs). PFBS concentrations ranged from non-detect to 0.178 J μ g/Kg, which was detected in AOI3-SB1 (0 to 2 feet bgs). In the intermediate interval (2 to 20 feet bgs), PFOA and PFBS were non-detect. PFOS was detected at a concentration of 0.056 J μ g/Kg in AOI3-SB1 (18 to 20 feet bgs). In the deep interval (40 to 42 feet bgs), PFOA was non-detect. PFOS was detected at a concentration of 0.021 J μ g/Kg in AOI3-SB1 (40 to 42 feet bgs.). Tables 6-2 through 6-4 summarize the detected compounds in soil. Figure 6-1 and Figure 6-2 present ranges of detections of PFOS and PFOA in soil.

Within the 1049th Firefighting Training Area 2, soil was sampled at one interval from soil boring location AOI03-02-SB and from surface soil locations AOI03-SS1 through AOI03-SS5. All PFOA, PFOS, and PFBS results were below SLs. In the shallow interval (0 to 2 feet bgs), PFOA and PFBS concentrations were non-detect. PFOS concentrations ranged from non-detect to 2.91 µg/Kg, which occurred at AOI03-SS3 (0 to 2 feet bgs). **Table 6-2** summarizes the detected compounds in soil. **Figure 6-3** and **Figure 6-4** present ranges of detections of PFOS and PFOA in soil.

6.5.2 AOI 3 Groundwater Analytical Results

PFOA, PFOS, and PFBS were detected in six of nine groundwater samples collected in AOI 3. All PFOA, PFOS, and PFBS results were below SLs. PFOA concentrations ranged from non-detect to 1.71 J ng/L (MW-10). PFOS concentrations ranged from non-detect to 2.32 J ng/L (AOI03-MW02). PFBS concentrations ranged from non-detect to 59.2 ng/L (AOI3-MW1). The detected compounds are summarized in **Table 6-5**. **Figure 6-5** and **Figure 6-6** present the range of detections for PFOS and PFOA at the facility.

6.5.3 AOI 3 Conclusions

Based on the results of SI, PFOA, PFOS, and PFBS were detected in soil at AOI 3; however, the detected concentrations were below soil SLs. PFOA, PFOS, and PFBS were detected in groundwater at AOI 3, but were below groundwater SLs. Therefore, further evaluation at AOI 3 is not warranted.

THIS PAGE INTENTIONALLY BLANK

	Area of Interest	AOI01																			
	Sample ID	AOI1-l	HA1-0-2	AOI1-l	HA2-0-2	AOI1-S	SB1-0-2	AOI1-S	SB2-0-2	A0I1-S	B3-0-2	AOI01-04	-SB-00-02	AOI01-05-	-SB-00-02	AOI01-06	-SB-00-02	AOI1-S	SS1-0-2	AOI1-S	SS1-0-2R
	Sample Date	02/12	2/2019	02/12	2/2019	02/13	3/2019	02/15	5/2019	02/20	/2019	10/07	/2020	10/06	/2020	10/06	6/2020	02/14	/2019	05/2	0/2019
	Depth	0 -	2 ft	0 -	2 ft	0 -	2 ft	0 - 2 ft		0 -	0 - 2 ft		0 - 2 ft		2 ft	0 -	2 ft	0 - 2 ft		0 -	- 2 ft
Analyte	OSD Screening	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
	Level ^a																				
Soil, PFAS by LCMS			able B-15 (
6:2 FTS	-	0.043	J	0.043	X	ND		ND		ND		ND		ND		ND		ND		ND	
8:2 FTS	-	ND		ND	UX	ND		ND		0.015	J	ND		ND		ND		ND		ND	<u> </u>
NEtFOSAA	-	ND		ND	UX	ND		ND		0.011	J	ND		ND		ND		ND		ND	<u> </u>
NMeFOSAA	-	ND		ND	UX	ND		ND		ND		ND		ND		ND		ND		ND	
PFBA	-	ND		ND	UX	ND		0.305	J	ND		ND		ND		1.42		ND		0.051	J
PFBS	130000	ND		ND	UX	ND		0.104	J	0.012	J	ND		ND		ND		ND		ND	
PFDA	-	ND		ND	UX	ND		ND		ND		ND		ND		ND		ND		0.021	J
PFDoA	-	ND		ND	UX	ND		ND		ND		ND		ND		ND		ND		0.00951	J
PFHpA	-	0.015	J	ND	UX	ND		0.163	J	0.043	J	ND		ND		ND		ND		0.018	J
PFHxA	-	0.197	J	0.068	X	0.03	J	0.618	J	ND		ND		ND		ND		ND		ND	1
PFHxS	-	ND		ND	UX	ND		7.97		0.103	J	ND		ND		ND		ND		0.011	J
PFNA	-	ND		ND	UX	ND		ND		0.032	J	ND		ND		ND		ND		0.066	J
PFOA	130	ND		ND	UX	ND		ND		0.122	J	ND		ND		ND		ND		0.069	J
PFOS	130	ND		ND	UX	ND		0.751	J	0.664	J	ND		ND		ND		0.082	J	0.386	J
PFPeA	-	0.102	J	ND	UX	ND		0.364	J	0.087	J	ND		ND		ND		ND		ND	
PFTeDA	-	ND		ND	UX	ND		ND		0.015	J	ND		ND		ND		ND		ND	
PFTrDA	-	ND		ND	UX	ND		ND		0.00995	J	ND		ND		ND		ND		ND	1
PFUnDA	-	ND		ND	UX	ND		ND		0.013	J	ND		ND		ND		ND		0.011	J

Detected concentration exceeded OSD Screening Level

References

a. Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 15 October 2019. Soil screening levels based on residential scenario for direct ingestion of contaminated soil.

Interpreted Qualifiers

J = Estimated concentration

J+ = Estimated concentration, biased high

UJ = The analyte was not detected at a level greater than or equal to the adjusted DL. However, the reported adjusted DL is approximate and may be inaccurate or imprecise.

UX/X = The presence or absence of the analyte cannot be substantiated. Acceptance or rejection of the data should be decided by the project team, but exclusion of the data is recommended.

Chemical Abbreviations

6:2 FTS 6:2 fluorotelomer sulfonate 8:2 FTS 8:2 fluorotelomer sulfonate

NEtFOSAA N-ethyl perfluorooctane- sulfonamidoacetic acid NMeFOSAA N-methyl perfluorooctanesulfonamidoacetic acid

PFAS per- and polyfluoroalkyl substances

PFBA perfluorobutanoic acid PFBS perfluorobutanesulfonic acid PFDA perfluorodecanoic acid PFDoA PFHpA perfluoroheptanoic acid PFHxA perfluorohexanoic acid PFHxS perfluorohexanesulfonic acid PFNA perfluorononanoic acid PFOA perfluorooctanoic acid PFOS perfluorooctanesulfonic acid PFPeA

perfluoropentanoic acid PFTeDA perfluorotetradecanoic acid perfluorotridecanoic acid PFUnDA perfluoro-n-undecanoic acid

Acronyms and Abbreviations AOI Area of Interest

DL detection limit DUP Duplicate ft Hand auger HQ Hazard quotient ID identification Liquid Chromatography Mass Spectrometry LCMSMS LOD Limit of Detection ND Analyte not detected above the LOD Office of the Secretary of Defense OSD QSM Quality Systems Manual Qual Interpreted Qualifier SB Soil boring

Surface Soil USEPA United States Environmental Protection Agency

μg/Kg micrograms per Kilogram Not applicable

SS

6-7 AECOM

	Area of Interest										A	OI01									
	Sample ID	AOI1-S	SS2-0-2	AOI1-S	SS3-0-2	AOI1-	SS4-0-2	AOI1-	SS5-0-2	A0I1-9	SS6-0-2	AOI01-S	S7-00-02	AOI01-S	S8-00-02	AOI01-S	S9-00-02	AOI01-S	S10-00-02	AOI01-S	S11-00-02
	Sample Date	02/14	/2019	02/14	1/2019	02/1	4/2019	02/14	4/2019	02/20	0/2019	10/07	7/2020	10/06	/2020	10/06	6/2020	10/06	6/2020	10/0	7/2020
	Depth	0 -	2 ft	0 -	2 ft	0	- 2 ft	0 -	- 2 ft	0 -	2 ft	0 -	- 2 ft	0 -	2 ft	0 -	2 ft	0 -	2 ft	0 -	- 2 ft
Analyte	OSD Screening	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Soil, PFAS by LCMSI	Level a MS Compliant with (OSM 5.1 Te	ablo R-15 /	ua/Ka)																	
6:2 FTS	-	ND	able b-15 (MD		ND	111	ND		ND		ND		ND		ND		ND		ND	
8:2 FTS		ND		ND		ND	U.I	ND		ND		ND		ND		ND		ND		ND	+
NEtFOSAA	_	ND		ND		ND	UJ	0.014	J	ND		ND		ND		ND		ND		ND	+
NMeFOSAA	-	ND		ND		ND	UJ	ND		ND		ND		ND		ND		ND		ND	1
PFBA	-	ND		ND		0.029	J	ND		ND		ND		ND		ND		ND		0.205	J
PFBS	130000	ND		ND		ND	UJ	ND		0.010	J	ND		ND		ND		ND		1.08	1
PFDA	-	ND		0.034	J	ND	UJ	ND		ND		ND		ND		ND		ND		ND	
PFDoA	-	ND		ND		ND	UJ	ND		0.016	J	ND		ND		ND		ND		ND	
PFHpA	-	ND		0.018	J	ND	UJ	0.023	J	0.026	J	ND		ND		ND		ND		ND	
PFHxA	-	ND		0.092	J	0.064	J	ND		ND		ND		ND		ND		ND		0.769	J
PFHxS	-	ND		0.252	J	ND	UJ	0.058	J	0.068	J	ND		ND		ND		ND		4.38	
PFNA	-	ND		0.01	J	ND	UJ	0.065	J	ND		ND		ND		ND		ND		ND	
PFOA	130	ND		0.064	J	ND	UJ	0.106	J	0.089	J	ND		ND		ND		ND		0.166	J
PFOS	130	ND		0.249	J	ND	UJ	2.23		0.822	J	0.630	J	ND		ND		ND		39.9	
PFPeA	-	ND		0.0099	J	ND	UJ	0.039	J	0.043	J	ND		ND		ND		ND		0.180	J
PFTeDA	-	ND		ND		ND	UJ	ND	ļ	0.015	J	ND	ļ	ND		ND		ND		ND	<u> </u>
PFTrDA	-	ND		ND		ND	UJ	ND		ND		ND		ND		ND		ND		ND	
PFUnDA	-	ND		ND		ND	UJ	ND		0.018	J	ND		ND		ND		ND		ND	

Detected concentration exceeded OSD Screening Level

A Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HC=0.1. 15 October 2019. Soil screening levels based on residential scenario for direct ingestion of contaminated soil.

Interpreted Qualifiers

J = Estimated concentration

J+ = Estimated concentration, biased high

UJ = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL). However, the reported adjusted DL is approximate and may be inaccurate or imprecise.

UX/X = The presence or absence of the analyte cannot be substantiated. Acceptance or rejection of the data should be decided by the project team, but exclusion of the data is recommended.

Chemical Abbreviations

6:2 fluorotelomer sulfonate 8:2 FTS 8:2 fluorotelomer sulfonate

N-ethyl perfluorooctane- sulfonamidoacetic acid NEtFOSAA NMeFOSAA N-methyl perfluorooctanesulfonamidoacetic acid

PFAS per- and polyfluoroalkyl substances

PFBA perfluorobutanoic acid PFBS perfluorobutanesulfonic acid PFDA perfluorodecanoic acid PFDoA perfluorododecanoic acid PFHpA perfluoroheptanoic acid PFHxA perfluorohexanoic acid PFHxS perfluorohexanesulfonic acid PFNA perfluorononanoic acid PFOA perfluorooctanoic acid PFOS perfluorooctanesulfonic acid PFPeA perfluoropentanoic acid PFTeDA perfluorotetradecanoic acid perfluorotridecanoic acid

Acronyms and Abbreviations

PFUnDA

Area of Interest AOI DL detection limit DUP Duplicate ft Hand auger HQ Hazard quotient ID identification

Liquid Chromatography Mass Spectrometry LCMSMS

perfluoro-n-undecanoic acid

LOD Limit of Detection

ND Analyte not detected above the LOD Office of the Secretary of Defense OSD QSM Quality Systems Manual Qual Interpreted Qualifier SB

Soil boring SS Surface Soil

USEPA United States Environmental Protection Agency

μg/Kg micrograms per Kilogram Not applicable

6-8 AECOM

	Area of Interest				AO	101									AC	0102					
	Sample ID	AOI01-S	S12-00-02	AOI01-S	S13-00-02	AOI01-SS	314-00-02	AOI01-S	S15-00-02	AOI2-l	IA1-0-2	AOI2-	HA2-0-2	AOI2-I	HA3-0-2	AOI2-F	HA4-0-2	AOI2-F	HA5-0-2	AOI2-ł	HA6-0-2
	Sample Date	10/07	//2020	10/07	/2020	10/07	/2020	10/0	7/2020	02/13	/2019	02/1	3/2019	02/13	3/2019	02/13	3/2019	02/13	3/2019	02/12	2/2019
	Depth	0 -	2 ft	0 -	2 ft	0 -	2 ft	0 -	2 ft	0 -	2 ft	0	- 2 ft	0 - 2 ft		0 - 2 ft		0 - 2 ft		0 -	- 2 ft
Analyte	OSD Screening	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
	Level ^a																				
Soil, PFAS by LCMSM	S Compliant with 0	QSM 5.1 Ta	ible B-15 (i	ug/Kg)										,							
6:2 FTS	-	ND		ND		ND		ND		ND		0.059	J	0.044	J	ND		ND		ND	
8:2 FTS	-	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
NEtFOSAA	-	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
NMeFOSAA	-	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
PFBA	-	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
PFBS	130000	ND		ND		ND		ND		ND		ND		0.059	J	ND		0.057	J	0.07	J
PFDA	-	ND		ND		ND		ND		0.026	J	ND		ND		ND		0.035	J	ND	
PFDoA	-	ND		ND		ND		ND		ND		ND		ND		ND		0.013	J	ND	
PFHpA	-	ND		ND		ND		ND		0.018	J	ND		0.029	J	0.02	J	0.066	J	0.124	J
PFHxA	-	ND		ND		ND		ND		0.066	J	0.029	J	0.151	J	0.053	J	0.179	J	0.351	J
PFHxS	-	ND		ND		ND		ND		0.042	J	0.025	J	0.118	J	0.05	J	0.628	J	2.27	
PFNA	-	ND		ND		ND		ND		ND		ND		ND		0.013	J	ND		0.074	J
PFOA	130	ND		ND		ND		ND		ND		ND		ND		0.042	J	0.126	J	0.265	J
PFOS	130	ND		2.11		0.872	J	1.03		0.217	J	0.086	J	0.233	J	0.407	J	1.73		10.9	
PFPeA	-	ND		ND		ND		ND		ND		ND		ND		ND		ND		0.154	J
PFTeDA	-	ND		ND		ND		ND		ND		ND		ND		ND		0.016	J	ND	
PFTrDA	-	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
PFUnDA	-	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	1

Detected concentration exceeded OSD Screening Level

References

A Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 15 October 2019. Soil screening levels based on residential scenario for direct ingestion of contaminated soil.

J = Estimated concentration

J+ = Estimated concentration, biased high

UJ = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL). However, the reported adjusted DL is approximate and may be inaccurate or imprecise. UX/X = The presence or absence of the analyte cannot be substantiated. Acceptance or rejection of the data should be decided by the project team, but exclusion of the data is recommended.

Interpreted Qualifiers

Chemical Abbreviations 6:2 FTS 6:2 fluorotelomer sulfonate 8:2 FTS 8:2 fluorotelomer sulfonate NEtFOSAA N-ethyl perfluorooctane- sulfonamidoacetic acid NMeFOSAA N-methyl perfluorooctanesulfonamidoacetic acid PFAS per- and polyfluoroalkyl substances PFBA perfluorobutanoic acid PFBS perfluorobutanesulfonic acid PFDA perfluorodecanoic acid PFDoA perfluorododecanoic acid PFHpA perfluoroheptanoic acid perfluorohexanoic acid PFHxA perfluorohexanesulfonic acid PFHxS PFNA perfluorononanoic acid PFOA perfluorooctanoic acid PFOS perfluorooctanesulfonic acid perfluoropentanoic acid PFTeDA perfluorotetradecanoic acid PFTrD4 perfluorotridecanoic acid PFUnDA perfluoro-n-undecanoic acid Acronyms and Abbreviations Area of Interest AOI DL detection limit DUP Duplicate HA Hand auger

Hazard quotient ID identification LCMSMS Liquid Chromatography Mass Spectrometry LOD Limit of Detection ND Analyte not detected above the LOD OSD Office of the Secretary of Defense QSM Quality Systems Manual Interpreted Qualifier Qual SB Soil boring SS Surface Soil USEPA United States Environmental Protection Agency micrograms per Kilogram μg/Kg

Not applicable

6-9 AECOM

	Area of Interest										AOI0)2					-				
	Sample ID	AOI2-S	SB1-0-2	AOI2-	SB2-0-2	AOI2-SB2	-0-2-DUP	AOI02-03	3-SB-00-02	AOI02-03-S	B-00-02-DUP	AOI2-S	SS1-0-2	AOI2-S	SS2-0-2	AOI2-SS	2-0-2-DUP	AOI2-S	SS3-0-2	AOI2-	-SS4-0-2
	Sample Date	05/21	1/2019	05/2	3/2019	05/23	/2019	10/06	6/2020	10/0	6/2020	05/20)/2019	05/20	0/2019	05/20	0/2019	05/20)/2019	05/2	0/2019
	Depth	0 -	2 ft	0 -	2 ft	0 -	2 ft	0 -	2 ft	0	2 ft	0 -	2 ft	0 -	2 ft	0 -	2 ft	0 -	2 ft	0 -	- 2 ft
Analyte	OSD Screening Level ^a	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Soil, PFAS by LCMS	MS Compliant with 0	QSM 5.1 Ta	able B-15	(µg/Kg)																	
6:2 FTS	-	0.022	J	0.027	J	ND		ND		ND		ND		0.023	J	ND		ND		ND	
8:2 FTS	-	ND		0.014	J	ND		ND		ND		0.033	J	ND		ND		ND		ND	
NEtFOSAA	-	ND		0.013	J	ND		ND		ND		ND		ND		ND		ND		ND	
NMeFOSAA	-	ND		ND		ND		ND		ND		ND		0.029	J	ND		ND		ND	
PFBA	-	0.212	J	ND		0.051	J	ND		ND		0.215	J	ND		ND		0.071	J	ND	
PFBS	130000	0.039	J	ND		ND		ND		ND		0.03	J	ND		ND		0.00705	J	ND	
PFDA	-	0.041	J	0.08	J	ND		ND		ND		ND		ND		0.024	J	0.012	J	0.03	J
PFDoA	-	ND		0.026	J	ND		ND		ND		0.00614	J	ND		ND		ND		ND	
PFHpA	-	0.145	J	0.018	J	0.055	J	ND		ND		0.085	J	0.012	J	0.00955	J	0.013	J	ND	
PFHxA	-	0.392	J	ND		0.096	J	ND		ND		ND		ND		ND		ND		ND	
PFHxS	-	0.684	J	0.131	J	0.289	J	ND		ND		0.193	J	0.025	J	0.038	J	0.032	J	0.069	J
PFNA	-	0.084	J	0.035	J	0.141	J	ND		ND		0.074	J	0.03	J	0.025	J	ND		0.048	J
PFOA		0.271	J	0.042	J	0.135	J	ND		ND		0.132	J	ND		0.055	J	ND		0.098	J
PFOS	130	4.14		4.31	J	22	J	0.602	J	0.807	J	2.22		0.893	J	0.758	J	0.181	J	1.09	J+
PFPeA	-	0.228	J	ND		ND		ND		ND		0.421	J	ND		ND		0.14	J	ND	
PFTeDA	-	ND		0.014	J	ND		ND		ND		ND		ND		ND		ND		ND	
PFTrDA	-	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
PFUnDA		0.015	J	0.022	J	ND		ND		ND		ND		0.00894	J	ND		ND		ND	

Detected concentration exceeded OSD Screening Level

A Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HC=0.1. 15 October 2019. Soil screening levels based on residential scenario for direct ingestion of contaminated soil.

Interpreted Qualifiers

J = Estimated concentration

J+ = Estimated concentration, biased high

UJ = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL). However, the reported adjusted DL is approximate and may be inaccurate or imprecise.

UX/X = The presence or absence of the analyte cannot be substantiated. Acceptance or rejection of the data should be decided by the project team, but exclusion of the data is recommended.

Chemical Abbreviations

6:2 fluorotelomer sulfonate 8:2 FTS 8:2 fluorotelomer sulfonate

N-ethyl perfluorooctane- sulfonamidoacetic acid NEtFOSAA NMeFOSAA N-methyl perfluorooctanesulfonamidoacetic acid

PFAS per- and polyfluoroalkyl substances PFBA perfluorobutanoic acid

PERS perfluorobutanesulfonic acid PFDA perfluorodecanoic acid PFDoA PFHpA perfluoroheptanoic acid

PFHxA perfluorohexanoic acid PFHxS perfluorohexanesulfonic acid PFNA perfluorononanoic acid PFOA perfluorooctanoic acid PFOS perfluorooctanesulfonic acid PFPeA perfluoropentanoic acid PFTeDA perfluorotetradecanoic acid

perfluorotridecanoic acid PFUnDA perfluoro-n-undecanoic acid

Acronyms and Abbreviations

ID

Area of Interest AOI DL detection limit DUP Duplicate Hand auger HQ Hazard quotient

identification LCMSMS Liquid Chromatography Mass Spectrometry

LOD Limit of Detection

ND Analyte not detected above the LOD Office of the Secretary of Defense OSD

QSM Quality Systems Manual Qual Interpreted Qualifier SB Soil boring SS Surface Soil

USEPA United States Environmental Protection Agency

μg/Kg micrograms per Kilogram Not applicable

6-10 AECOM

Table 6-2 PFAS Detections in Surface Soil Site Inspection Report, Fort William Henry Harrison

	Area of Interest				AC	102									A	OI03					
	Sample ID	AOI2-S	SS5-0-2	AOI02-S	S6-00-02	AOI02-S	S7-00-02	AOI02-S	S8-00-02	AOI3-F	IA1-0-2	AOI03-02	-SB-00-02	AOI3-	SB1-0-2	AOI03-S	S1-00-02	AOI03-S	S2-00-02	AOI03-S	S3-00-02
	Sample Date	05/20	0/2019	10/06	5/2020	10/06	6/2020	10/06	6/2020	02/12	/2019	10/06	3/2020	05/22	2/2019	10/07	7/2020	10/07	/2020	10/7/	/2020
	Depth	0 -	2 ft	0 -	2 ft	0 -	2 ft	0 -	2 ft	0 -	2 ft	0 -	2 ft	0 -	2 ft	0 -	2 ft	0 -	2 ft	0 -	2 ft
Analyte	OSD Screening Level ^a	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Soil, PFAS by LCMSM		QSM 5.1 Ta	able B-15	µg/Kg)																	
6:2 FTS	-	ND		ND		ND		ND		0.021	J	ND		ND		ND		ND		ND	
8:2 FTS	-	ND		ND		ND		ND		ND		ND		0.103	J	ND		ND		ND	
NEtFOSAA	-	0.00995	J	ND		ND		ND		ND		ND		ND		ND		ND		ND	
NMeFOSAA	-	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
PFBA	-	ND		ND		ND		ND		ND		ND		0.181	J	ND		ND		ND	
PFBS	130000	ND		ND		ND		ND		0.178	J	ND		0.103	J	ND		ND		ND	
PFDA	-	ND		ND		ND		ND		ND		ND		0.024	J	ND		ND		ND	
PFDoA	-	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
PFHpA	-	0.021	J	ND		ND		ND		0.04	J	ND		0.698	J	ND		ND		ND	
PFHxA	-	ND		0.165	J	0.282	J	ND		1.05	J	ND		0.792	J	ND		ND		ND	
PFHxS	-	0.062	J	0.213	J	0.259	J	0.274	J	0.345	J	ND		5.02		ND		ND		0.278	J
PFNA	-	0.048	J	ND		ND		ND		ND		ND		0.110	J	ND		ND		ND	
PFOA	130	0.08	J	ND		ND		ND		0.043	J	ND		0.473	J	ND		ND		ND	
PFOS	130	0.679	J	0.678	J	ND		0.617	J	0.308	J	ND		12.3		ND		0.438	J	2.91	
PFPeA	-	ND		ND		ND		ND		1.3		ND		0.248	J	ND		ND		ND	
PFTeDA	-	ND	ļ	ND		ND		ND		0.012	J	ND		ND		ND		ND		ND	Ь——
PFTrDA	-	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
PFUnDA	-	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	<u> </u>

Detected concentration exceeded OSD Screening Level

A Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HC=0.1. 15 October 2019. Soil screening levels based on residential scenario for direct ingestion of contaminated soil.

Interpreted Qualifiers

J = Estimated concentration

J+ = Estimated concentration, biased high

UJ = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL). However, the reported adjusted DL is approximate and may be inaccurate or imprecise.

UX/X = The presence or absence of the analyte cannot be substantiated. Acceptance or rejection of the data should be decided by the project team, but exclusion of the data is recommended.

Chemical Abbreviations

6:2 fluorotelomer sulfonate 8:2 FTS 8:2 fluorotelomer sulfonate

N-ethyl perfluorooctane- sulfonamidoacetic acid NEtFOSAA NMeFOSAA N-methyl perfluorooctanesulfonamidoacetic acid

PFAS per- and polyfluoroalkyl substances

PFBA perfluorobutanoic acid PFBS perfluorobutanesulfonic acid PFDA perfluorodecanoic acid PFDoA PFHpA perfluoroheptanoic acid PFHxA perfluorohexanoic acid PFHxS perfluorohexanesulfonic acid PFNA perfluorononanoic acid PFOA perfluorooctanoic acid PFOS perfluorooctanesulfonic acid PFPeA perfluoropentanoic acid PFTeDA perfluorotetradecanoic acid perfluorotridecanoic acid

perfluoro-n-undecanoic acid

Acronyms and Abbreviations

PFUnDA

SS

Area of Interest AOI DL detection limit DUP Duplicate ft Hand auger HQ Hazard quotient ID identification Liquid Chromatography Mass Spectrometry LCMSMS

LOD Limit of Detection

ND Analyte not detected above the LOD Office of the Secretary of Defense OSD QSM Quality Systems Manual Qual Interpreted Qualifier SB Soil boring Surface Soil

USEPA United States Environmental Protection Agency

μg/Kg micrograms per Kilogram Not applicable

6-11 AECOM

Table 6-2 PFAS Detections in Surface Soil Site Inspection Report, Fort William Henry Harrison

F	Area of Interest	1			AOI03		
	Sample ID		S4-00-02		84-00-02-DUP	40102.0	S5-00-02
	Sample Date		7/2020		07/2020		7/2020
	Depth		2 ft) - 2 ft		2 ft
Analyte	OSD Screening	Result	Qual	Result	Qual	Result	Qual
	Level ^a						
Soil, PFAS by LCMSMS	Compliant with	QSM 5.1 T	able B-15 (μg/Kg)			
6:2 FTS	-	ND		ND		ND	
8:2 FTS	-	ND		ND		ND	
NEtFOSAA	-	ND		ND		ND	
NMeFOSAA	-	ND		ND		ND	
PFBA	-	ND		ND		ND	
PFBS	130000	ND		ND		ND	
PFDA	-	ND		ND		ND	
PFDoA	-	ND		ND		ND	
PFHpA	-	ND		ND		ND	
PFHxA	-	ND		ND		ND	
PFHxS	-	ND		ND		ND	
PFNA	-	ND		ND		ND	
PFOA	130	ND		ND		ND	
PFOS	130	0.764	J	0.936	J	0.215	J
PFPeA	-	ND		ND		ND	
PFTeDA	-	ND		ND		ND	
PFTrDA	-	ND		ND		ND	
PFUnDA	-	ND		ND		ND	

Detected concentration exceeded OSD Screening Level

References

a. Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 15 October 2019. Soil screening levels based on residential scenario for direct ingestion of contaminated soil.

Interpreted Qualifiers

J = Estimated concentration

J+ = Estimated concentration, biased high

UJ = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL). However, the reported adjusted DL is approximate and may be inaccurate or imprecise.

UX/X = The presence or absence of the analyte cannot be substantiated. Acceptance or rejection of the data should be decided by the project team, but exclusion of the data is recommended.

Chemical Abbreviations

6:2 FTS 6:2 fluorotelomer sulfonate 8:2 FTS 8:2 fluorotelomer sulfonate

NEtFOSAA N-ethyl perfluorooctane- sulfonamidoacetic acid NMeFOSAA N-methyl perfluorooctanesulfonamidoacetic acid

PFAS per- and polyfluoroalkyl substances PFBA perfluorobutanoic acid PFBS perfluorobutanesulfonic acid PFDA perfluorodecanoic acid PFDoA perfluorododecanoic acid PFHpA perfluoroheptanoic acid PFHxA perfluorohexanoic acid PFHxS perfluorohexanesulfonic acid PFNA perfluorononanoic acid PFOA perfluorooctanoic acid

PFOS perfluorooctanesulfonic acid PFPeA perfluoropentanoic acid PFTeDA perfluorotetradecanoic acid PFTrDA perfluorotridecanoic acid PFUnDA perfluoro-n-undecanoic acid

Acronyms and Abbreviations

Area of Interest AOI DL detection limit DUP Duplicate HA Hand auger Hazard quotient ID identification

LCMSMS Liquid Chromatography Mass Spectrometry

LOD Limit of Detection

Analyte not detected above the LOD ND OSD Office of the Secretary of Defense QSM Quality Systems Manual Interpreted Qualifier Qual SB Soil boring

SS Surface Soil

USEPA United States Environmental Protection Agency

micrograms per Kilogram μg/Kg

Not applicable

6-12 AECOM

Table 6-3 PFAS Detections in Shallow Subsurface Soil Site Inspection Report, Fort William Henry Harrison

	Area of Interest		AC	0101									F	AOI02							
	Sample ID	AOI1-l	HA1-2-4	AOI1-H	IA2-2-4	AOI2-F	IA1-2-4	AOI2-H	HA2-2-4	AOI2-HA2	-2-4-DUP	AOI2-H	HA3-2-4	AOI2-l	HA4-2-4	AOI2-H	HA5-2-4	AOI2-	HA6-2-4	AOI2-HA	6-2-4-DUP
	Sample Date	02/12	2/2019	02/12	/2019	02/13	3/2019	02/13	3/2019	2/13/	2019	02/13	3/2019	02/13	3/2019	02/13	3/2019	02/1:	2/2019	02/1	2/2019
	Depth	2 -	4 ft	2 -	4 ft	2 -	4 ft	2 -	4 ft	2 -	4 ft	2 -	4 ft	2 -	4 ft	2 -	4 ft	2 ·	4 ft	2	- 4 ft
Analyte	OSD Screening	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
	Level ^a																				
Soil, PFAS by LCMSMS	S Compliant with C	QSM 5.1 Ta	able B-15 (μg/Kg)																	
6:2 FTS	-	0.058	J	0.041	J	ND		0.041	J	ND		0.046	J	0.026	J	ND		0.019	J	ND	
NEtFOSAA	-	0.018	J	ND		ND		ND		ND		ND		ND		ND		ND		ND	
PFBA	-	ND		ND		ND		ND		0.069	J	0.168	J	ND		ND		ND		ND	
PFBS	1600000	0.00547	J	ND		0.0085	J	ND		0.00808	J	0.027	J	ND		0.047	J	0.036	J	0.031	J
PFDA	-	ND		ND		ND		ND		ND		0.015	J	ND		ND		ND		0.021	J
PFDoA	-	0.013	J	ND		ND		ND		ND		ND		ND		0.018	J	ND		ND	
PFHpA	-	0.01	J	ND		ND		ND		0.011	J	0.022	J	0.054	J	ND		0.072	J	0.054	J
PFHxA	-	0.061	J	0.035	J	ND		0.057	J	ND		0.146	J	0.141	J	0.144	J	0.263	J	0.22	J
PFHxS	-	ND		ND		0.129	J	ND		0.011	J	ND		0.091	J	0.307	J	0.285	J	0.25	J
PFNA	-	ND		ND		ND		ND		ND		ND		0.037	J	0.043	J	0.019	J	ND	
PFOA	1600	ND		ND		ND		ND		ND		ND		0.083	J	ND		0.087	J	0.081	J
PFOS	1600	ND		ND		0.135	J	ND		0.032	J	0.12	J	0.326	J	1.92		0.572	J	0.489	J
PFPeA	-	ND		ND		ND		ND		ND		0.116	J	ND		ND		0.143	J	0.093	J
PFTeDA	-	ND		ND		ND		ND		ND		ND		0.022	J	0.013	J	ND		ND	

Detected concentration exceeded OSD Screening Levels

References
a. Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 15 October 2019. Soil screening levels based on industrial/commercial composite worker scenario for

Interpreted Qualifiers

J = Estimated concentration

Chemical Abbreviations

6:2 FTS 6:2 fluorotelomer sulfonate

NEtFOSAA N-ethyl perfluorooctane- sulfonamidoacetic acid

PFAS per- and polyfluoroalkyl substances

PFBA perfluorobutanoic acid PFBS perfluorobutanesulfonic acid PFDA perfluorodecanoic acid perfluorododecanoic acid PFDoA PFHpA perfluoroheptanoic acid PFHxA perfluorohexanoic acid perfluorohexanesulfonic acid PFHxS PFNA perfluorononanoic acid PFOA perfluorooctanoic acid PFOS perfluorooctanesulfonic acid PFPeA perfluoropentanoic acid PFTeDA perfluorotetradecanoic acid

Acronyms and Abbreviations

AOI Area of Interest DUP Duplicate Hand auger HA HQ Hazard quotient ID identification LOD Limit of Detection LCMSMS Liquid Chromatography Mass Spectrometry ND Analyte not detected above the LOD OSD Office of the Secretary of Defense QSM Quality Systems Manual Qual Interpreted Qualifier SB Soil boring

USEPA United States Environmental Protection Agency

μg/Kg micrograms per Kilogram

Not applicable

6-13 AECOM

Table 6-3 PFAS Detections in Shallow Subsurface Soil Site Inspection Report, Fort William Henry Harrison

	Area of Interest					AOI02				AC	0103
	Sample ID	AOI2-S	SB1-9-11	AOI2-S	SB2-8-10	AOI02-03	-SB-10-12	AOI02-03-SI	3-10-12-DUP	AOI3-F	HA1-2-4
	Sample Date	05/2	1/2019	05/2	3/2019	10/10	/2020	10/10	/2020	02/12	2/2019
	Depth	9 -	11 ft	8 -	10 ft	10 -	12 ft	10 -	12 ft	2 -	4 ft
Analyte	OSD Screening Level ^a	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Soil, PFAS by LCMS	MS Compliant with	QSM 5.1 T	able B-15 (ug/Kg)							
6:2 FTS	-	ND		0.019	J	ND		ND		ND	
NEtFOSAA	-	ND		ND		ND		ND		ND	
PFBA	-	ND		ND		ND		ND		ND	
PFBS	1600000	ND		ND		ND		ND		0.00739	J
PFDA	-	ND		ND		ND		ND		ND	
PFDoA	-	ND		ND		ND		ND		ND	
PFHpA	-	ND		ND		ND		ND		ND	
PFHxA	-	ND		ND		ND		ND		ND	
PFHxS	-	0.012	J	0.212	J	ND		ND		0.06	J
PFNA	-	ND		0.00501	J	ND		ND		ND	
PFOA	1600	ND		ND		ND		ND		0.034	J
PFOS	1600	0.046	J	0.161	J	ND		ND		0.244	J
PFPeA	-	ND		ND		ND		ND		ND	
PFTeDA	-	ND		ND		ND		ND		ND	

Detected concentration exceeded OSD Screening Levels

References

a. Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HO=0.1. 15 October 2019. Soil screening levels based on industrial/commercial composite worker scenario for incidental ingestion of contaminated soil.

Interpreted Qualifiers

J = Estimated concentration

Chemical Abbreviations

6:2 FTS 6:2 fluorotelomer sulfonate

NEtFOSAA N-ethyl perfluorooctane- sulfonamidoacetic acid

PFAS per- and polyfluoroalkyl substances

PFBA perfluorobutanoic acid PFBS perfluorobutanesulfonic acid PFDA perfluorodecanoic acid PFDoA perfluorododecanoic acid PFHpA perfluoroheptanoic acid PFHxA perfluorohexanoic acid PFHxS perfluorohexanesulfonic acid PFNA perfluorononanoic acid PFOA perfluorooctanoic acid PFOS perfluorooctanesulfonic acid PFPeA perfluoropentanoic acid PFTeDA perfluorotetradecanoic acid

Acronyms and Abbreviations

Area of Interest AOI DUP Duplicate ft Hand auger HA HQ Hazard quotient ID identification LOD Limit of Detection

LCMSMS Liquid Chromatography Mass Spectrometry ND Analyte not detected above the LOD OSD Office of the Secretary of Defense QSM Quality Systems Manual

Qual Interpreted Qualifier SB Soil boring

USEPA United States Environmental Protection Agency

μg/Kg micrograms per Kilogram

Not applicable

6-14 AECOM

Table 6-4 PFAS Detections in Deep Subsurface Soil Site Inspection Report, Fort William Henry Harrison

Area of Interest									AC	0101								
Sample ID	AOI1-SE	31-20-22	AOI1-SE	31-38-40	AOI1-SE	32-15-17	AOI1-SI	B2-28-30	A0I1-SI	33-18-20	A0I1-SB3-	18-20-DUP	A0I1-SE	33-38-40	AOI01-04	-SB-15-17	AOI01-04	-SB-30-32
Sample Date	02/13	3/2019	02/13	3/2019	02/15	/2019	02/15	5/2019	02/2	0/2019	02/20	0/2019	02/20	0/2019	10/09	9/2020	10/09	9/2020
Depth	20 -	22 ft	38 -	40 ft	15 -	17 ft	28 -	30 ft	18 -	20 ft	18 -	20 ft	38 -	40 ft	15 -	17 ft	30 -	32 ft
Analyte	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Soil, PFAS by LCMSMS	Compliant	with QSM	5.1 Table E	-15 (µa/Ka)													
	0.051	J	ND		ND		ND		ND		ND		ND		ND		ND	
8:2 FTS	ND		ND		ND		ND		0.117	J	ND		ND		ND		ND	
NEtFOSAA	ND		ND		ND		ND		0.135	J	ND		0.025	J	ND		ND	
NMeFOSAA	ND		ND		ND		ND		0.136	J	ND		0.02	J	ND		ND	
PFBA	0.00848	J	ND		ND		ND		ND		ND		ND		ND		ND	
PFBS	0.00418	J	ND		0.142	J	ND		0.021	J	ND		ND		ND		ND	
PFDA	0.014	J	0.013	J	ND		ND		ND		ND		ND		ND		ND	
PFDoA	0.00994	J	ND		ND		ND		0.233	J	ND		0.013	J	ND		ND	
PFHpA	ND		ND		ND		ND		0.021	J	0.00431	J	0.011	J	ND		ND	
PFHxA	0.035	J	ND		0.226	J	0.059	J	ND		ND		ND		ND		ND	
PFHxS	ND		ND		0.916	J	ND		0.034	J	ND		0.033	J	ND		ND	
PFOA	ND		ND		0.055	J	ND		ND		ND		ND		ND		ND	
PFOS	0.039	J	0.014	J	0.478	J	ND		0.526	J	ND		0.135	J	ND		ND	
PFPeA	ND		ND		ND		ND		ND		ND		ND		ND		ND	
PFTeDA	ND		ND		ND		ND		0.13	J	0.012	J	0.015	J	ND		ND	
PFTrDA	ND		ND		ND		ND		0.238	J	0.00534	J	ND		ND		ND	
PFUnDA	0.00496	J	ND		ND		ND		0.14	J	ND		ND		ND		ND	

Interpreted Qualifiers

J = Estimated concentration

Chemical Abbreviations

6:2 FTS 6:2 fluorotelomer sulfonate 8:2 FTS 8:2 fluorotelomer sulfonate

NEtFOSAA N-ethyl perfluorooctane- sulfonamidoacetic acid N-methyl perfluorooctanesulfonamidoacetic acid NMeFOSAA

PFAS per- and polyfluoroalkyl substances

PFBA perfluorobutanoic acid perfluorobutanesulfonic acid PFBS PFDA perfluorodecanoic acid perfluorododecanoic acid PFDoA PFHpA perfluoroheptanoic acid PFHxA perfluorohexanoic acid perfluorohexanesulfonic acid PFHxS PFOA perfluorooctanoic acid PFOS perfluorooctanesulfonic acid PFPeA perfluoropentanoic acid PFTeDA perfluorotetradecanoic acid PFTrDA perfluorotridecanoic acid PFUnDA perfluoro-n-undecanoic acid

Acronyms and Abbreviations

AOI Area of Interest DUP Duplicate ID identification LCMSMS

Liquid Chromatography Mass Spectrometry

LOD Limit of Detection

ND Analyte not detected above the LOD QSM Quality Systems Manual

Qual Interpreted Qualifier

SB Soil boring

μg/Kg micrograms per Kilogram

6-15 AECOM

Table 6-4 PFAS Detections in Deep Subsurface Soil Site Inspection Report, Fort William Henry Harrison

Area of Interest				AO	101						AC	0102				AC	0103	
Sample ID	AOI01-05-	-SB-15-17	AOI01-05	-SB-30-32	AOI01-06	S-SB-15-17	AOI01-06	-SB-30-32	AOI2-SI	31-18-20	AOI2-S	32-18-20	AOI02-03	S-SB-25-27	AOI3-SE	31-18-20	AOI3-S	B1-40-42
Sample Date	10/08			3/2020		9/2020		9/2020		/2019		3/2019		0/2020		2/2019		2/2019
Depth	15 -	17 ft	30 -	32 ft	15 -	17 ft	30 -	32 ft		20 ft		20 ft		27 ft		20 ft		- 42 ft
Analyte									Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
Soil, PFAS by LCMSMS	Compliant	with QSM	5.1 Table E	-15 (μg/Kg														
6:2 FTS	ND		ND		ND		ND		ND		0.014	J	ND		ND		ND	
8:2 FTS	ND		ND		ND		ND		ND		0.00707	J	ND		ND		ND	
NEtFOSAA	ND		ND		ND		ND		ND		ND		ND		ND		ND	
NMeFOSAA	ND		ND		ND		ND		ND		ND		ND		ND		ND	
PFBA	ND		ND		ND		ND		ND		ND		ND		ND		0.059	J
PFBS	ND		ND		ND		ND		ND		0.00186	J	ND		ND		0.147	J
PFDA	ND		ND		ND		ND		ND		ND		ND		ND		ND	
PFDoA	ND		ND		ND		ND		ND		ND		ND		ND		ND	
PFHpA	ND		ND		ND		ND		ND		ND		ND		ND		0.022	J
PFHxA	ND		ND		ND		ND		ND		ND		ND		0.046	J	0.314	J
PFHxS	ND		ND		ND		ND		ND		0.029	J	ND		0.00812	J	0.128	J
PFOA	ND		ND		ND		ND		ND		ND		ND		ND		ND	
PFOS	ND		ND		ND		ND		0.00678	J	ND		0.237	J	0.056	J	0.021	J
PFPeA	ND		ND		ND		ND		ND		ND		ND		ND		0.129	J
PFTeDA	ND		ND		ND		ND		ND		ND		ND		ND		ND	
PFTrDA	ND		ND		ND		ND		ND		ND		ND		ND		ND	
PFUnDA	ND		ND		ND		ND		ND	1	ND		ND		ND		ND	1

Interpreted Qualifiers

J = Estimated concentration

Chemical Abbreviations

6:2 FTS	6:2 fluorotelomer sulfonate
8:2 FTS	8:2 fluorotelomer sulfonate

NEtFOSAA N-ethyl perfluorooctane- sulfonamidoacetic acid NMeFOSAA N-methyl perfluorooctanesulfonamidoacetic acid

PFAS per- and polyfluoroalkyl substances

PFBA perfluorobutanoic acid PFBS perfluorobutanesulfonic acid PFDA perfluorodecanoic acid perfluorododecanoic acid PFDoA PFHpA perfluoroheptanoic acid PFHxA perfluorohexanoic acid perfluorohexanesulfonic acid PFHxS PFOA perfluorooctanoic acid PFOS perfluorooctanesulfonic acid PFPeA perfluoropentanoic acid PFTeDA perfluorotetradecanoic acid PFTrDA perfluorotridecanoic acid PFUnDA perfluoro-n-undecanoic acid

Acronyms and Abbreviations

AOI Area of Interest DUP Duplicate ID identification LCMSMS Liquid Chromatography Mass Spectrometry

LOD Limit of Detection

ND Analyte not detected above the LOD QSM Quality Systems Manual

Qual Interpreted Qualifier SB Soil boring

μg/Kg micrograms per Kilogram

6-16 AECOM

	Area of Interest										A	DI01									
	Sample ID	AOI1	-MW1	AOI1-M	W1-GW	AOI1	-MW2	AOI1-M	W2-DUP	AOI1-N	IW2-GW	AOI1	-MW3	AOI1-M	1W3-GW	AOI1-MW	3-GW-DUP	AOI01-M	W04-GW	AOI01-M	W05-GW
	Sample Date	05/28	3/2019	10/11	/2020	05/29	/2019	05/29	9/2019	10/12	2/2020	05/25	5/2019	10/10	0/2020	10/10	/2020	10/14	/2020	10/12	2/2020
Analyte	OSD Screening	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
	Level ^a																				i
Water, PFAS by LCMS	MS Compliant with	h QSM 5.1	Table B-1	5 (ng/L)																	
6:2 FTS	-	ND		ND		ND		ND		ND		3.24	J	ND		ND		ND		ND	ĺ
PFBA	-	4.52	J	ND		8.34	J	9.18		17.2		30.2		25.9		27.1		2.90	J	18.4	ĺ
PFBS	40000	3.16	J	3.00	J	4.52	J	4.74	J	11.2		34.1		23.1		25.8		3.24	J	21.7	
PFDA	-	ND	UJ	ND		ND		ND		ND		ND	UJ	ND		ND		ND		ND	
PFHpA	-	1.83	J	ND		4.00	J	3.84	J	4.90	J	22.4		23.0		23.8		ND		11.5	
PFHxA	-	7.81		4.32	J	15.2		15.2		33.4		80.9		72.6		84.2		5.05	J	53.3	
PFHxS	-	22.3		21.0		33.9		34.3		18.0		213		184	J+	197	J+	12.2		77.0	
PFNA	-	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
PFOA	40	1.17	J	2.10	J	4.58	J	4.43	J	2.75	J	12.4	J+	13.5		14.3		2.34	J	8.19	J
PFOS	40	8.82		5.53	J	29.2		27.3		25.4		24.8		62.2		61.6		5.26	J	34.4	
PFPeA	-	9.46		4.68	J	16.7		16.7		47.3		103		78.6		88.6		6.51	J	56.5	

Grey Fill Detected concentration exceeded OSD Screening Level

References

a. Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 15 October 2019. Groundwater screening levels based on residential scenario for direct ingestion of groundwater.

Interpreted Qualifiers

- J = Estimated concentration
- J- = Estimated concentration, biased low
- J+ = Estimated concentration, biased high
- UJ = The analyte was not detected at a level greater than or equal to the adjusted DL. However, the reported adjusted DL is approximate and may be inaccurate or imprecise.

Chemical Abbreviations

6:2 FTS 6:2 fluorotelomer sulfonate PFAS per- and polyfluoroalkyl substances PFBA perfluorobutanoic acid PFBS perfluorobutanesulfonic acid PFDA perfluorodecanoic acid PFHpA perfluoroheptanoic acid PFHxA perfluorohexanoic acid PFHxS perfluorohexanesulfonic acid PFNA perfluorononanoic acid PFOA perfluorooctanoic acid perfluorooctanesulfonic acid PFOS PFPeA perfluoropentanoic acid

Acronyms and Abbreviations

 AOI
 Area of Interest

 DL
 detection limit

 DUP
 Duplicate

 GW
 Groundwater

 HQ
 Hazard quotient

 ID
 identification

LCMSMS Liquid Chromatography Mass Spectrometry
LOD Limit of Detection

MW monitoring well

ND Analyte not detected above the LOD
OSD Office of the Secretary of Defense
QSM Quality Systems Manual

Qual Interpreted Qualifier

USEPA United States Environmental Protection Agency

ng/L nanogram per liter
- Not applicable

	Area of Interest					AC	0101									AC	102				
	Sample ID	AOI01-M	IW06-GW	BH	I-02	BH-02-	101020	FH	1 -02	FH-02-	101120	AOI2	-MW1	AOI2-M	W1-GW	AOI2-MW	1-GW-DUP	AOI2	MW2	AOI2-N	/W2-GW
	Sample Date	10/13	3/2020	05/28	3/2019	10/10	/2020	05/28	8/2019	10/11	/2020	05/29	9/2019	10/12	2/2020	10/12	2/2020	5/30/	2019	10/13	3/2020
Analyte	OSD Screening	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
	Level ^a																				
Water, PFAS by LCMSI	MS Compliant with	h QSM 5.1	Table B-15	(ng/L)																	
6:2 FTS	-	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
PFBA	-	11.6		6.30		4.02	J	7.59		6.42	J	36.2		41.6		43.2		3.74	J	ND	1
PFBS	40000	14.7		1.66	J	ND		2.65	J	2.06	J	27.3		16.5		17.5		1.36	J	ND	1
PFDA	-	ND		1.74	J	ND		ND		ND		ND		ND		ND		ND		ND	1
PFHpA	-	15.7		2.69	J	ND		3.97	J	3.90	J	19.0		21.8		23.0		ND		ND	1
PFHxA	-	25.2		10.2		7.25	J	13.8		11.6		102	J-	108		109		3.03	J	ND	1
PFHxS	-	114		5.06		4.89	J	16.7		20.4		155	J-	154		153		27.6		1.86	J
PFNA	-	1.71	J	0.861	J	ND		ND		ND		1.86	J	ND		ND		ND		ND	
PFOA	40	9.16	J	4.68	J+	ND		7.31	J+	7.25	J	10.7	J+	12.6		14.6		3.07	J+	ND	
PFOS	40	34.2		6.88		2.61	J	9.25		8.74	J	118		89.4		110		9.14		4.67	J
PFPeA	-	21.6		10.2		7.30	J	16.5		13.1		121		151		153		ND		ND	

Grev Fill Detected cond

Detected concentration exceeded OSD Screening Level

References

a. Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 15 October 2019. Groundwater screening levels based on residential scenario for direct ingestion of groundwater.

Interpreted Qualifiers

- J = Estimated concentration
- J- = Estimated concentration, biased low
- J+ = Estimated concentration, biased high
- UJ = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL). However, the reported adjusted DL is approximate and may be inaccurate or imprecise.

Chemical Abbreviations

6:2 FTS 6:2 fluorotelomer sulfonate PFAS per- and polyfluoroalkyl substances PFBA perfluorobutanoic acid PFBS perfluorobutanesulfonic acid PFDA perfluorodecanoic acid PFHpA perfluoroheptanoic acid PFHxA perfluorohexanoic acid PFHxS perfluorohexanesulfonic acid PFNA perfluorononanoic acid PFOA perfluorooctanoic acid perfluorooctanesulfonic acid PFOS PFPeA perfluoropentanoic acid

Acronyms and Abbreviations

 AOI
 Area of Interest

 DL
 detection limit

 DUP
 Duplicate

 GW
 Groundwater

 HQ
 Hazard quotient

 ID
 identification

LCMSMS Liquid Chromatography Mass Spectrometry
LOD Limit of Detection

MW monitoring well

ND Analyte not detected above the LOD
OSD Office of the Secretary of Defense
QSM Quality Systems Manual

Qual Interpreted Qualifier

USEPA United States Environmental Protection Agency

ng/L nanogram per liter
- Not applicable

	Area of Interest						A	OI02									AC	0103			
	Sample ID	AOI02-M	IW03-GW	MW	V-06	MW-0	6-DUP	MV	V-07	MV	/-08	MW-08	-101120	AOI3	-MW1	AOI3-M	W1-GW	AOI03-M	W02-GW	MV	N-10
	Sample Date	10/14	1/2020	05/29	9/2019	05/29	9/2019	05/30	0/2019	05/29	/2019	10/11	/2020	05/29	/2019	10/09	/2020	10/13	/2020	05/29	9/2019
Analyte	OSD Screening	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
	Level ^a																				
Water, PFAS by LCMS	MS Compliant with	h QSM 5.1	Table B-15	(ng/L)																	
6:2 FTS	-	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
PFBA	-	39.2		10.4		ND		ND		45.3		45.8		14.8		4.84	J	ND		3.38	J
PFBS	40000	17.2		ND		ND		ND		20.9		14.6		59.2		18.5		2.07	J	ND	
PFDA	-	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
PFHpA	-	24.6		ND		ND		ND		20.6		25.3		1.60	J	ND		ND		2.47	J
PFHxA	-	87.2		ND		1.82	J	1.74	J	112		116		48.7		16.8		2.40	J	3.52	J
PFHxS	-	113		1.99	J	ND		2.17	J	69.9		88.3		5.66	J	3.91	J	5.86	J	2.66	J
PFNA	-	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
PFOA	40	10.0		ND		ND		ND		10.8	J+	12.8		ND		ND		ND		1.71	J+
PFOS	40	6.29	J	1.83	J	ND		ND		8.74		8.50	J	1.63	J	2.28	J	2.32	J	ND	
PFPeA	-	152		ND		ND		ND		171		178		15.4		5.85	J	ND		4.65	J

Grey Fill Detected concentration exceeded OSD Screening Level

References

a. Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 15 October 2019. Groundwater screening levels based on residential scenario for direct ingestion of groundwater.

Interpreted Qualifiers

- J = Estimated concentration
- J- = Estimated concentration, biased low
- J+ = Estimated concentration, biased high
- UJ = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL). However, the reported adjusted DL is approximate and may be inaccurate or imprecise.

Chemical Abbreviations

6:2 FTS 6:2 fluorotelomer sulfonate PFAS per- and polyfluoroalkyl substances PFBA perfluorobutanoic acid PFBS perfluorobutanesulfonic acid PFDA perfluorodecanoic acid PFHpA perfluoroheptanoic acid PFHxA perfluorohexanoic acid PFHxS perfluorohexanesulfonic acid PFNA perfluorononanoic acid PFOA perfluorooctanoic acid perfluorooctanesulfonic acid PFOS PFPeA perfluoropentanoic acid

Acronyms and Abbreviations

AOI Area of Interest
DL detection limit
DUP Duplicate
GW Groundwater
HQ Hazard quotient
ID identification

LCMSMS Liquid Chromatography Mass Spectrometry
LOD Limit of Detection

MW monitoring well

ND Analyte not detected above the LOD
OSD Office of the Secretary of Defense
QSM Quality Systems Manual

Qual Interpreted Qualifier

USEPA United States Environmental Protection Agency

ng/L nanogram per liter
- Not applicable

	Area of Interest										
	Sample ID	MV	V-11	MW-11	I-100920	OBT	MW-01	PH	1 -1	PH-2	-DUP
	Sample Date	05/30	0/2019	10/0	9/2020	05/30	0/2019	05/30	/2019	05/30	/2019
Analyte	OSD Screening	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
	Level ^a										
Water, PFAS by LCMSM	S Compliant with	h QSM 5.1	Table B-15	5 (ng/L)							
6:2 FTS	-	ND		ND		ND		ND		ND	
PFBA	-	5.03		2.23	J	5.32		ND		ND	
PFBS	40000	ND		ND		ND		ND		ND	
PFDA	-	ND		ND		ND		ND		ND	
PFHpA	-	ND		ND		ND		ND		ND	
PFHxA	-	5.11		2.71	J	1.36	J	ND		ND	
PFHxS	-	2.27	J	ND		0.955	J	ND		ND	
PFNA	-	ND		ND		ND		ND		ND	
PFOA	40	ND		ND		ND		ND		ND	
PFOS	40	ND		ND		1.10	J	ND		ND	
PFPeA	-	6.49		ND		ND		ND		ND	

Grev Fill

Detected concentration exceeded OSD Screening Level

References

a. Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 15 October 2019. Groundwater screening levels based on residential scenario for direct ingestion of groundwater.

Interpreted Qualifiers

- J = Estimated concentration
- J- = Estimated concentration, biased low
- J+ = Estimated concentration, biased high
- UJ = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL). However, the reported adjusted DL is approximate and may be inaccurate or imprecise.

Chemical Abbreviations

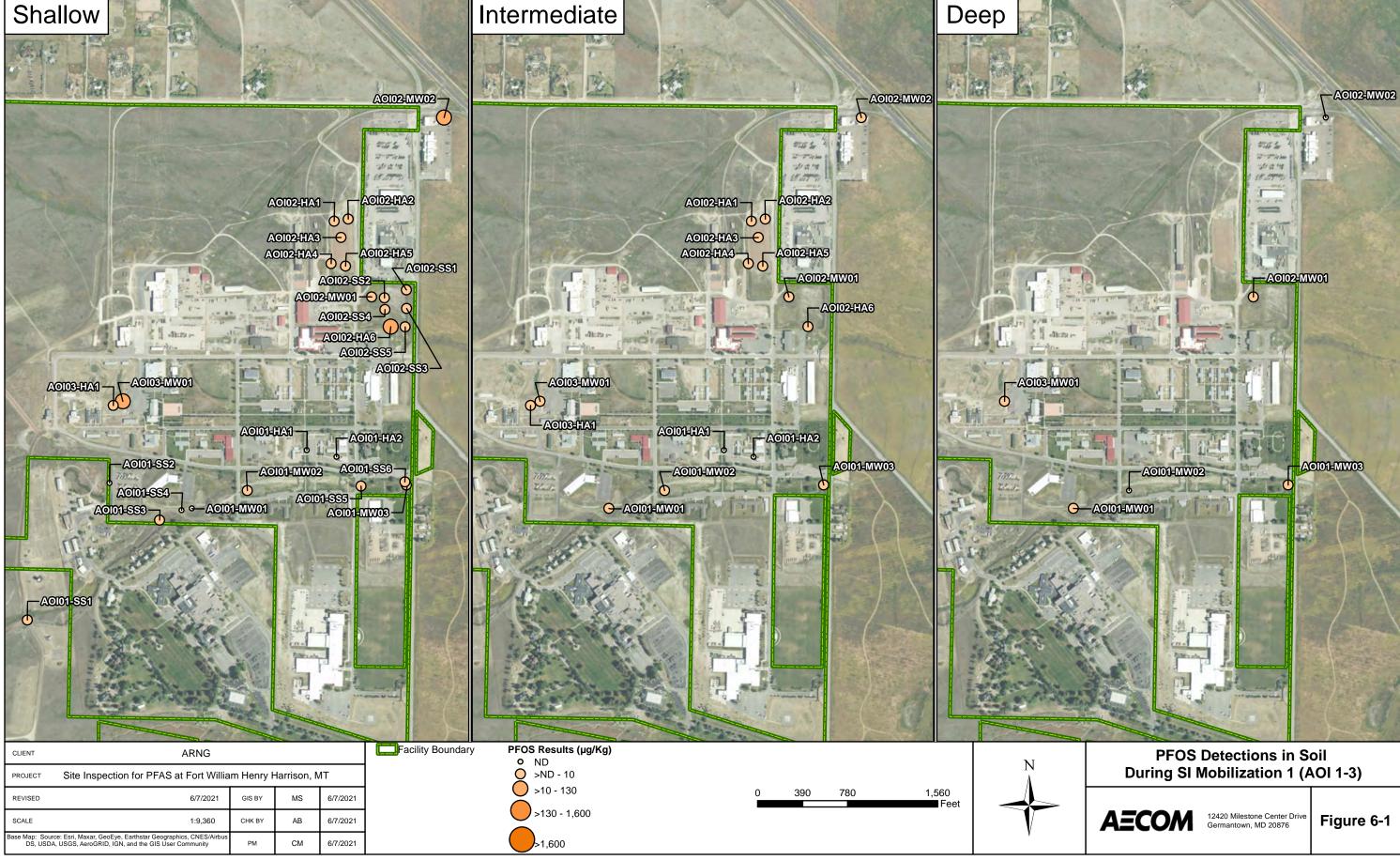
6:2 FTS 6:2 fluorotelomer sulfonate PFAS per- and polyfluoroalkyl substances PFBA perfluorobutanoic acid PFBS perfluorobutanesulfonic acid PFDA perfluorodecanoic acid PFHpA perfluoroheptanoic acid PFHxA perfluorohexanoic acid PFHxS perfluorohexanesulfonic acid PFNA perfluorononanoic acid PFOA perfluorooctanoic acid PFOS perfluorooctanesulfonic acid PFPeA perfluoropentanoic acid

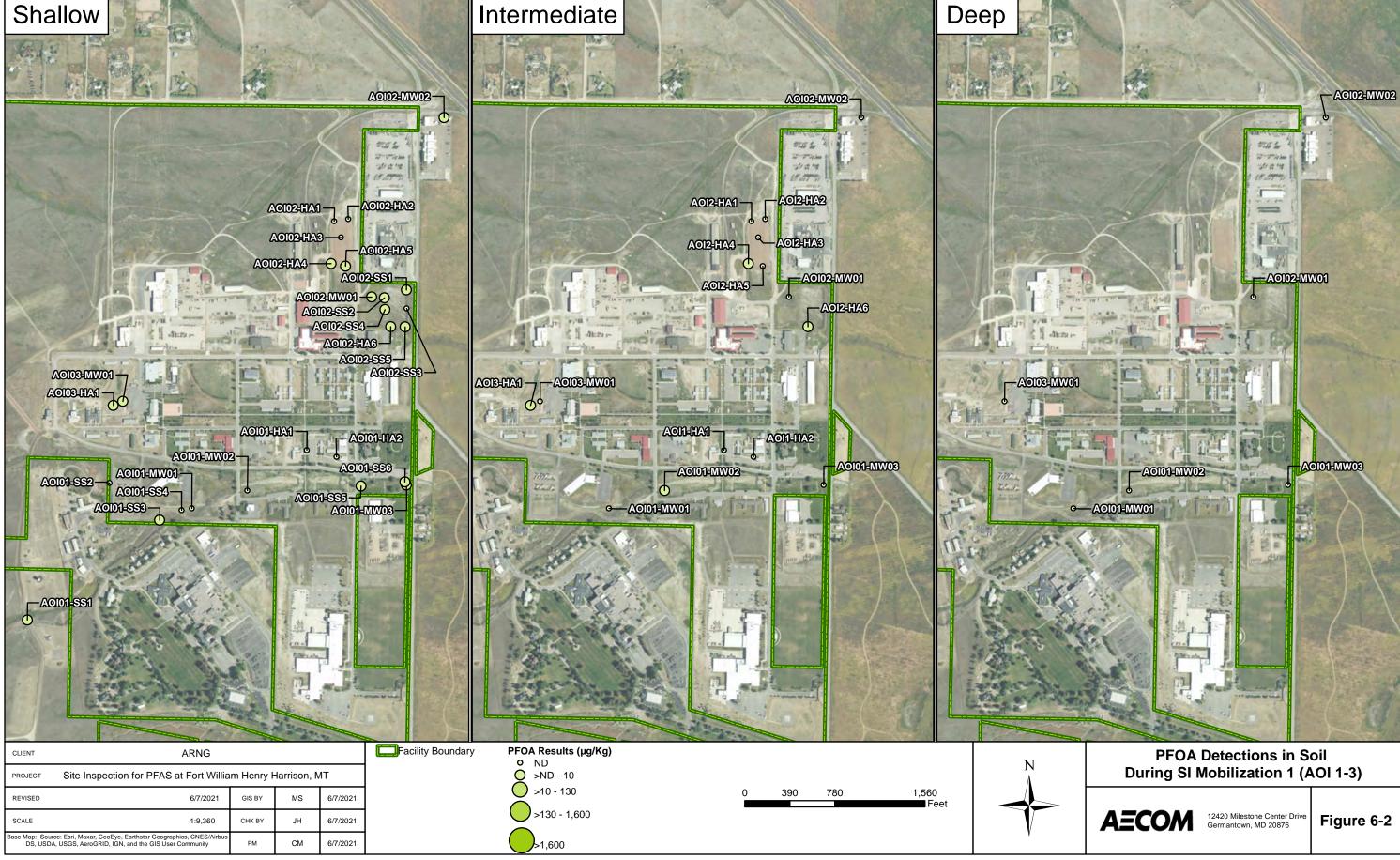
Acronyms and Abbreviations

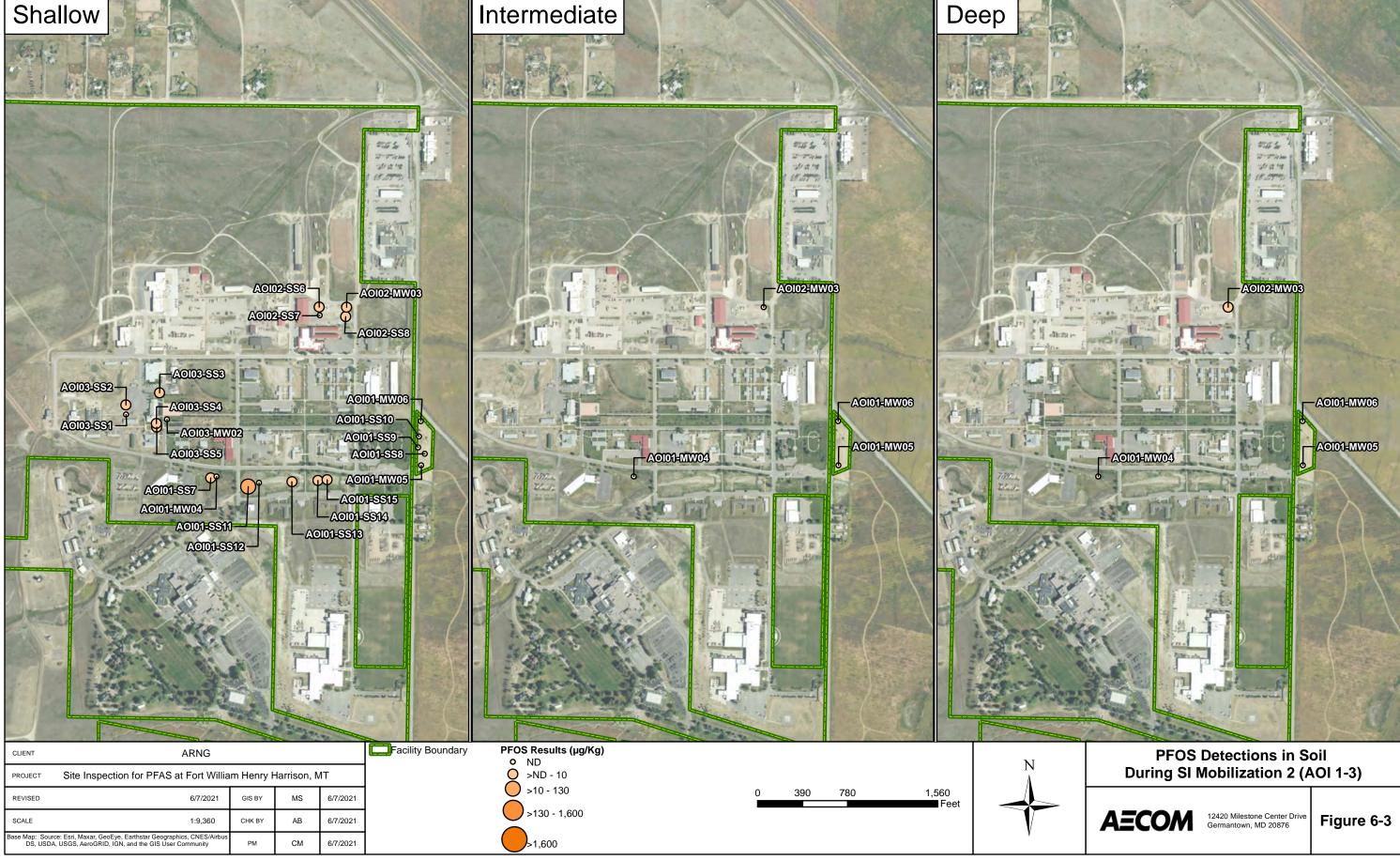
AOI Area of Interest
DL detection limit
DUP Duplicate
GW Groundwater
HQ Hazard quotient
ID identification

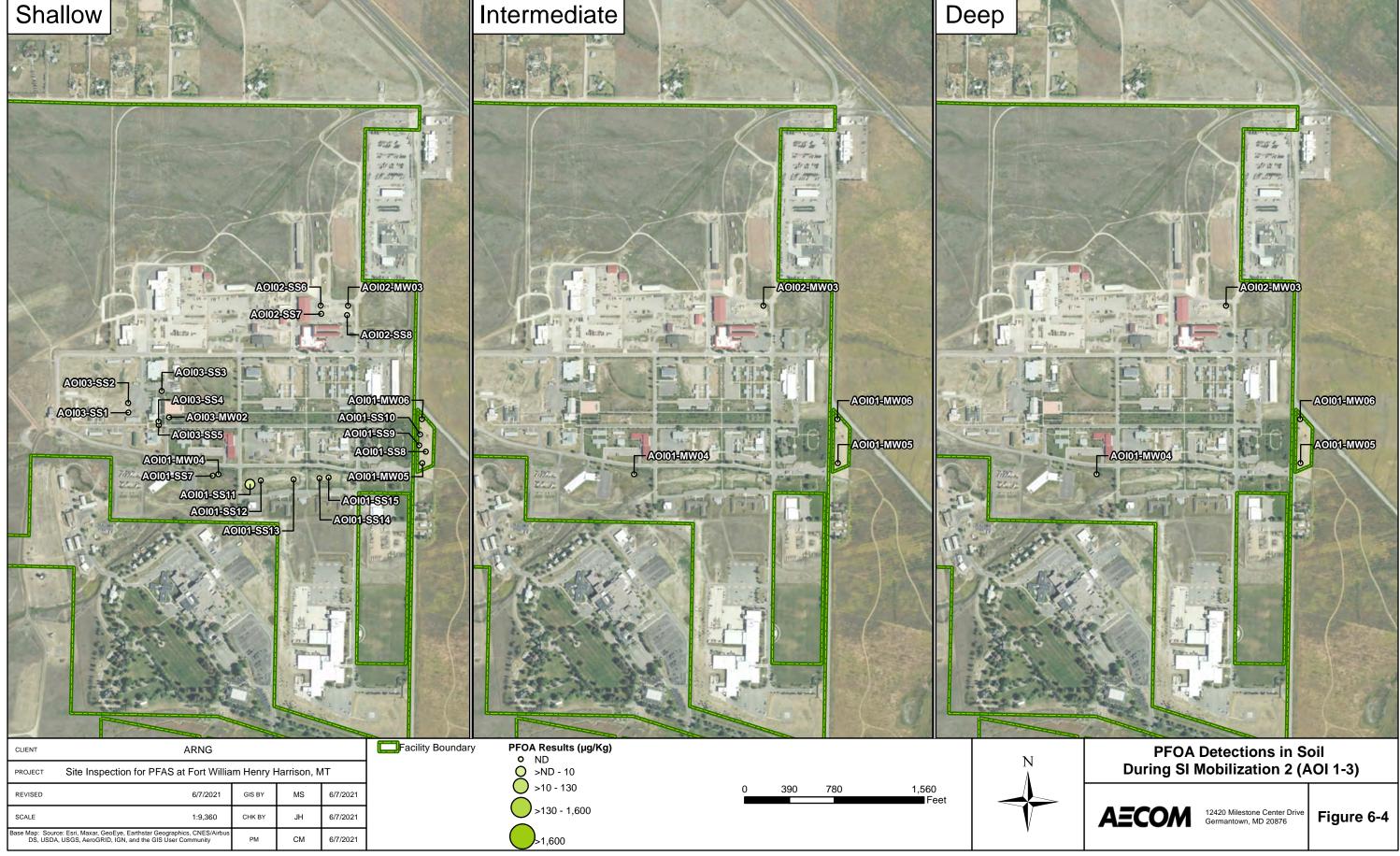
LCMSMS Liquid Chromatography Mass Spectrometry
LOD Limit of Detection

MW monitoring well

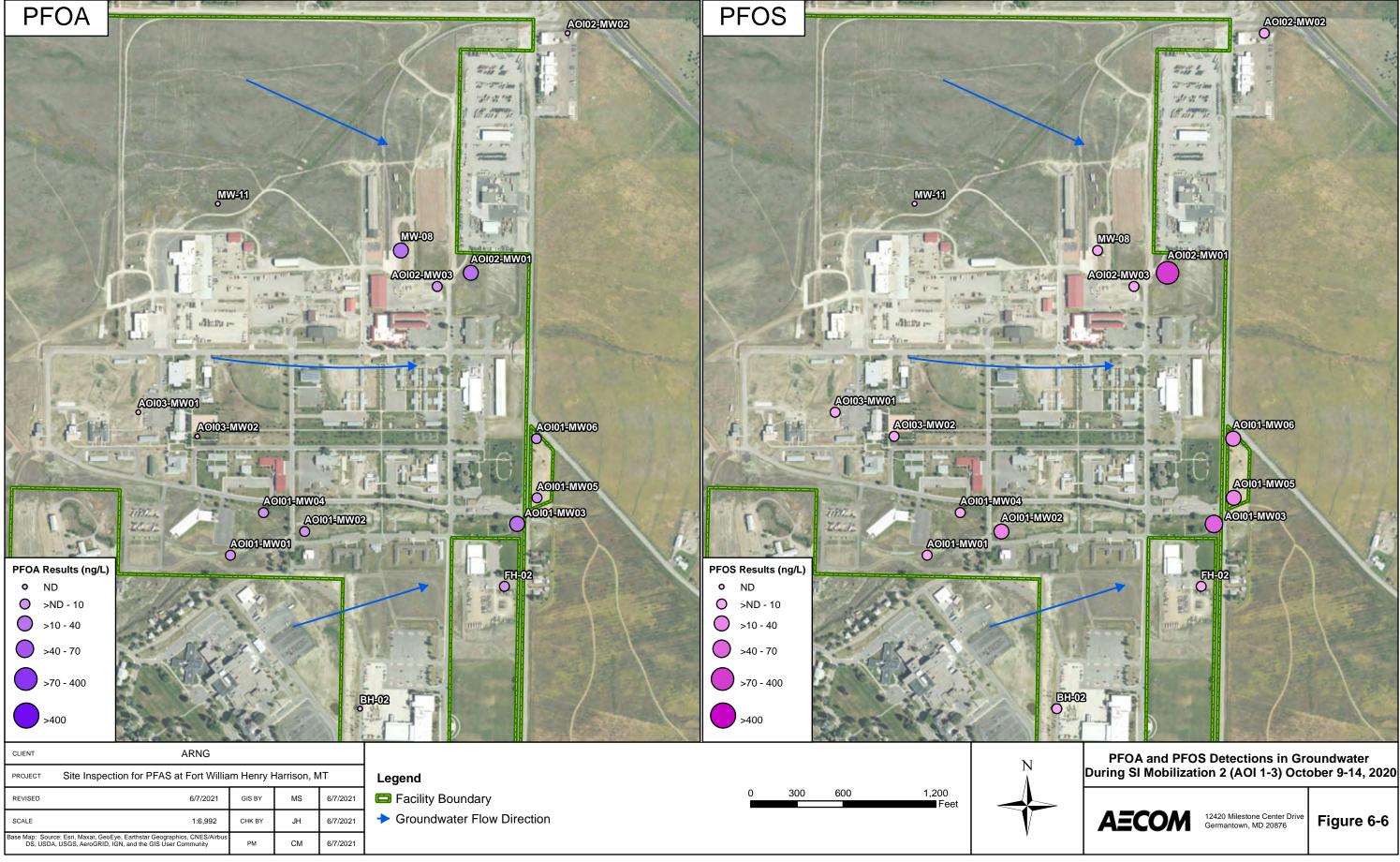

ND Analyte not detected above the LOD


OSD Office of the Secretary of Defense
QSM Quality Systems Manual


Qual Interpreted Qualifier


USEPA United States Environmental Protection Agency

ng/L nanogram per liter
- Not applicable



7. Exposure Pathways

The CSMs for each AOI, revised based on the SI findings, are presented on **Figure 7-1** through **Figure 7-3**. A CSM presents the current understanding of the site conditions with respect to known and suspected sources, potential transport mechanisms and migration pathways, and potentially exposed human receptors. A human exposure pathway is considered potentially complete when the following conditions are present:

- 1. Contaminant source;
- 2. Environmental fate and transport;
- 3. Exposure point;
- 4. Exposure route; and
- 5. Potentially exposed populations

If any of these elements are missing, the pathway is incomplete. The CSM figures use an empty circle symbol to represent an incomplete exposure pathway. Areas with an incomplete pathway generally warrant no further action; however, the pathway is considered potentially complete if PFOA, PFOS, or PFBS are detected, in which case the CSM figure uses a half-filled circle symbol to represent a potentially complete exposure pathway. Additionally, a completely filled circle symbol is used to indicate when a potentially complete exposure pathway has detections of PFOA, PFOS, or PFBS above the SLs. Areas with an identified potentially complete pathway may warrant further investigation. In general, the potential routes of exposure to PFAS are ingestion and inhalation. Human exposure via the dermal contact pathway may occur, and current risk practice suggests it is an insignificant pathway compared to ingestion; however, exposure data for dermal pathways are sparse and continue to be the subject of PFAS toxicological study. The receptors evaluated are consistent with those listed in USEPA guidance for risk screening (USEPA, 2001). Receptors include site workers (e.g., facility staff and visiting soldiers), construction workers, trespassers, residents outside the facility boundary, and recreational users outside of the facility boundary.

7.1 Soil Exposure Pathway

The SI results for PFOA, PFOS, and PFBS in soil were used to determine whether a potentially complete pathway exists between the source and potential receptors at each AOI based on the aforementioned criteria.

7.1.1 AOI 1

From approximately 1995 to 2003, AFFF was released by the MTARNG to soil in AOI 1 through firetruck washing and emptying near the 1049th Engineer Detachment Building (1010 Building) into the Mt. Defensa Avenue Drainage Ditch. In addition, the 1049th also trained with foam in the Navy Parking Lot north of AOI1-MW1 (1049th Firefighting Training Area 1) and in the channel area east of AOI1-MW2 before the channel was excavated (1049th Firefighting Training Area 3). Specific details regarding the frequency, volume, chemical composition, and concentration of any potential AFFF used at either FTA are not known. There is adjacent, offsite potential PFAS releases that have occurred upgradient of FTWHH near this ditch from VA fire department activities. PFOA, PFOS, and PFBS were detected in soil in this AOI 1; however, concentrations were below SLs. Based on the results of the SI in AOI 1, ground-disturbing activities could potentially result in site worker, construction worker, trespasser, resident, and recreational user exposure to PFOA, PFOS, and PFBS via inhalation of dust. Ground-disturbing activities could potentially result in site worker, construction worker, trespasser, and recreational user exposure

to PFOA, PFOS, and PFBS via ingestion of surface soil. Additionally, ground-disturbing activities to subsurface soil could potentially result in construction worker exposure. No current construction is occurring at AOI 1. Additionally, off-facility residents may potentially be exposed to PFOA, PFOS, and PFBS via inhalation of dust caused by on-facility ground disturbing activities, although this exposure is likely insignificant. The CSM for AOI 1 is presented on **Figure 7-1**.

7.1.2 AOI 2

AFFF was released to soil at three potential PFAS release areas within the AOI 2. The Former Weasel Barn located in the northeast section of the Cantonment Area, north of Sanananda Drive, was demolished in the winter of 2002 as part of a fire training exercise. Due to flooding of the Mt. Defensa Avenue Drainage Ditch (in AOI 1) during rapid snowmelt and large rainfall events, the central portion of the ditch was widened in 2016 via excavation. Excavated soil was used to create a vehicle staging area in AOI 2, adjacent to the retention pond. AFFF was stored at the MTARNG 1049th Engineer Detachment buildings. Due to the corrosive nature of AFFF to the firetruck storage tanks, AFFF was added just prior to imminent use. The firetrucks were washed near Building M1. In addition, the 1049th trained with foam in the parking lot south of MW-08. Specific details regarding the frequency, volume, chemical composition, and concentration of any potential AFFF used at the FTA are not known. PFAS were detected in soil in this area; however, concentrations were below SLs. Based on the results of the SI in AOI 2, ground-disturbing activities could potentially result in site worker, construction worker, trespasser, resident, and recreational user exposure to PFOA, PFOS, and PFBS via inhalation of dust. Ground-disturbing activities could potentially result in site worker, construction worker, trespasser, and recreational user exposure to PFOA, PFOS, and PFBS via ingestion of surface soil. Additionally, grounddisturbing activities to subsurface soil could potentially result in construction worker exposure. No current construction is occurring at AOI 2. Additionally, off-facility residents may potentially be exposed to PFOA, PFOS, and PFBS via inhalation of dust caused by on-facility ground disturbing activities, although this exposure is likely insignificant. The CSM for AOI 2 is presented on Figure 7-2.

7.1.3 AOI 3

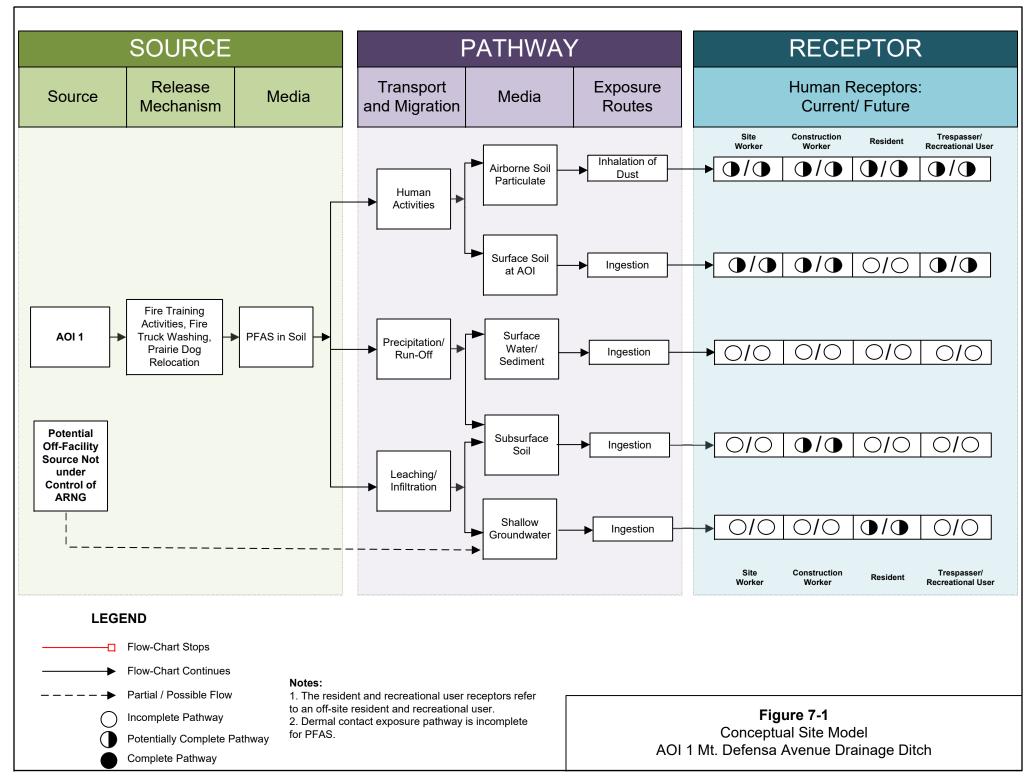
A structure was burned in the northwest portion of the Cantonment Area near the current Dining Facility (Building 410). The structure was burned sometime between 1995 and 2002. No information was available on the concentration or amount of AFFF used during the event. In addition, the 1049th trained with foam near the former location of Building 410 (Planned Fire Structure). Specific details regarding the frequency, volume, chemical composition, and concentration of any potential AFFF used at the FTA are not known. During the SI, PFAS were detected in soil in this area; however, concentrations were below SLs. Based on the results of the SI in AOI 3, ground-disturbing activities could potentially result in site worker, construction worker, trespasser, resident, and recreational user exposure to PFOA, PFOS, and PFBS via inhalation of dust. Ground-disturbing activities could potentially result in site worker, construction worker, trespasser, and recreational user exposure to PFOA, PFOS, and PFBS via ingestion of surface soil. Additionally, ground-disturbing activities to subsurface soil could potentially result in construction worker exposure. No current construction is occurring at AOI 3. The CSM for AOI 3 is presented on **Figure 7-3**.

7.2 Groundwater Exposure Pathway

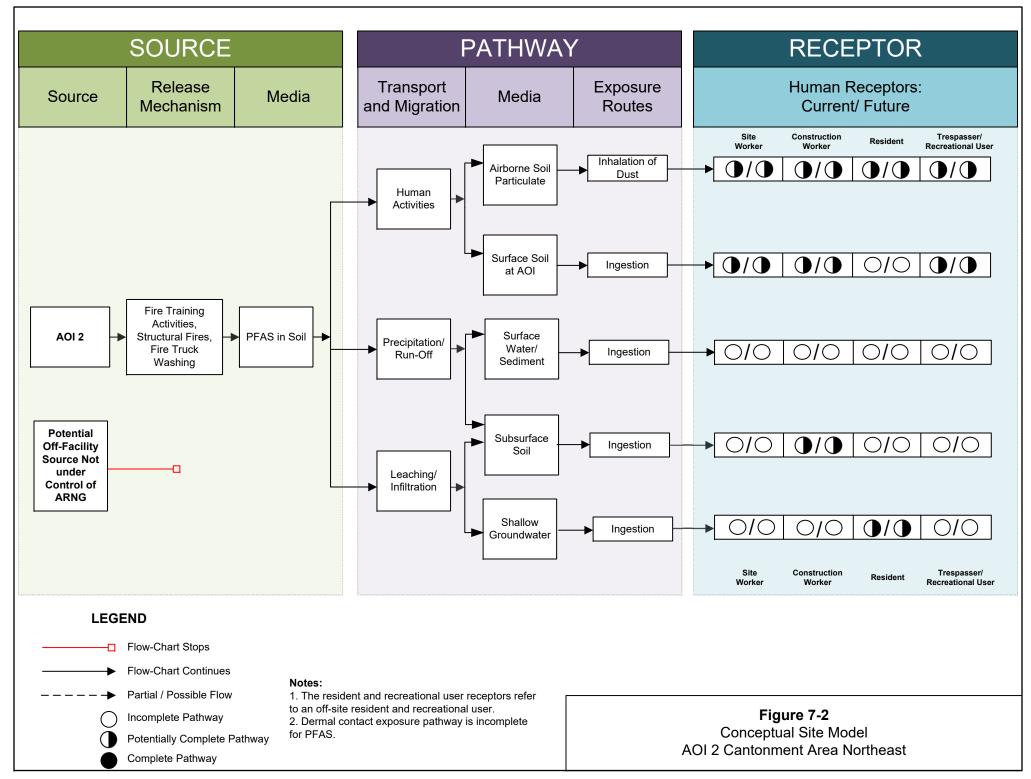
The SI results for PFOA, PFOS, and PFBS in groundwater were used to determine whether a potentially complete pathway exists between the source and potential receptors at each AOI based on the aforementioned criteria.

7.2.1 AOI 1

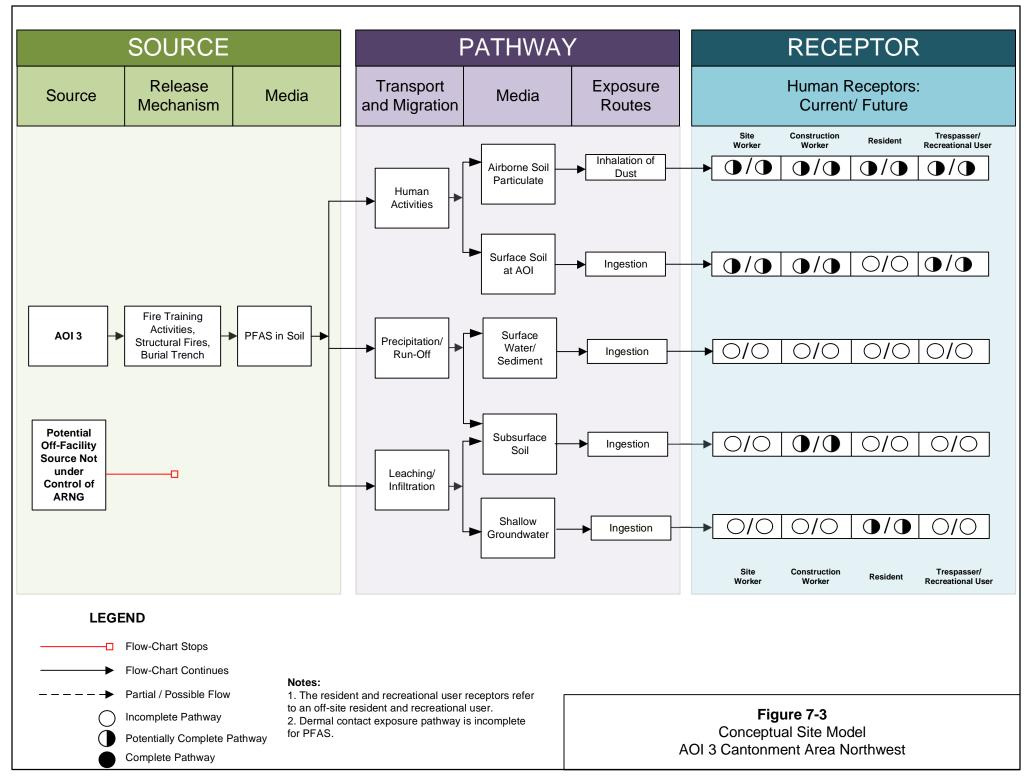
PFOA, PFOS, and PFBS were detected in groundwater from permanent monitoring wells at AOI 1 and exceeded the SL for PFOS at AOI1-MW3, which is located near the facility boundary. Private residential drinking water well sampling downgradient of AOI 1 was performed in 2019, and PFOA, PFOS, and PFBS were detected in groundwater, but were below SLs. Therefore, the ingestion exposure pathway for groundwater is considered potentially complete for offsite residents. The facility is on city water, which has been tested and confirmed to be PFAS-free (see **Section 2.2.2**); therefore, the ingestion pathway is incomplete for site workers. Further, due to the depth of groundwater, the ingestion pathway for construction workers, off-facility recreational users, and trespassers is also considered incomplete. The CSM for AOI 1 is presented on **Figure 7-1**.


7.2.2 AOI 2

PFOA, PFOS, and PFBS were detected in groundwater from permanent monitoring wells at AOI 2 and exceeded the SL for PFOS at AOI2-MW1, which is located near the facility boundary. Private residential drinking water well sampling downgradient of AOI 1 was performed in 2019, and PFOA, PFOS, and PFBS were detected in groundwater, but were below SLs. Therefore, the ingestion exposure pathway for groundwater is considered potentially complete for offsite residents. The facility is on city water, which has been tested and confirmed to be PFAS-free (see **Section 2.2.2**); therefore, the ingestion pathway is incomplete for site workers. Further, due to the depth of groundwater, the ingestion pathway for construction workers, off-facility recreational users, and trespassers is also considered incomplete. The CSM for AOI 2 is presented on **Figure 7-2**.


7.2.3 AOI 3

PFOA, PFOS, and/ or PFBS were detected in groundwater, but did not exceed SLs at AOI 3. PFOA, PFOS, and PFBS were detected in groundwater from permanent monitoring wells at AOI 3 at concentrations below the SLs. Therefore, the ingestion exposure pathway for groundwater is considered potentially complete for offsite residents. The facility is on city water, which has been tested and confirmed to be PFAS-free (see **Section 2.2.2**); therefore, the ingestion pathway is incomplete for site workers. Further, due to the depth of groundwater, the ingestion pathway for construction workers, off-facility recreational users, and trespassers is also considered incomplete. The CSM for AOI 3 is presented on **Figure 7-3**.


THIS PAGE INTENTIONALLY BLANK

THIS PAGE INTENTIONALLY BLANK

THIS PAGE INTENTIONALLY BLANK

THIS PAGE INTENTIONALLY BLANK

8. Summary and Outcome

This section summarizes SI activities and findings. The most significant findings are summarized in this section and are reproduced directly or abstracted from information contained in the report. The outcome provides general and comparative interpretations of the findings relative to the SLs.

8.1 SI Activities

SI field activities were conducted in two mobilizations. The first mobilization included permanent groundwater monitoring well installation, development, and sampling; surface and subsurface soil sampling; and groundwater sampling from existing wells from 10 to 20 February 2019 and from 19 to 31 May 2019. The second mobilization included permanent groundwater monitoring well installation, development, and sampling; surface and subsurface soil sampling; and groundwater sampling from existing wells from 5 to 15 October 2020. Field activities were conducted in accordance with the SI QAPP Addendum (AECOM, 2019).

To fulfill the project DQOs set forth in the approved SI QAPP Addendum (AECOM, 2019), samples were collected and analyzed for a subset of PFAS via LC/MS/MS compliant with DoD QSM 5.1 Table B-15 as follows. The 18 PFAS analyzed as part of the ARNG SI program are specified in **Section 5.8** of this Report.

Mobilization 1 -

- 47 soil grab samples from 27 boring locations; and
- 15 groundwater samples, six from new monitoring well locations, eight from existing monitoring well locations, and one from an irrigation well location.

Mobilization 2 -

- 30 soil grab samples from 27 boring locations; and
- 15 groundwater samples, five from new monitoring well locations and ten from existing monitoring well locations.

This information gathered during this investigation was used to determine the PFOA, PFOS, and PFBS at or above SLs, as well as the presence or absence of an additional 15 PFAS at the facility. Additionally, the CSMs were refined to assess whether a complete pathway exists between the source and receptors for potential exposure to PFOA, PFOS, and PFBS at the AOIs, which are described in **Section 7**.

8.2 SI Goals Evaluation

As described in **Section 4.2**, the SI activities were designed to achieve six main goals or DQOs. This section describes the SI goals and the conclusions that can be made for each based on the data collected during this investigation.

1) Determine the presence or absence of PFOA, PFOS, and PFBS at or above SLs, as well as the presence or absence of an additional 15 PFAS at the Site

PFOA, PFOS, and PFBS were detected at FTWHH in both soil and groundwater. PFOA, PFOS, and PFBS were detected both at the source areas as well as at the facility boundary between source areas and potential drinking water receptors. PFOS in groundwater at AOI 1 and AOI 2 exceeded the SL of 40 ng/L. Detections of PFOA and PFBS in groundwater were below the SLs. Additionally, the detected concentrations of PFOA, PFOS, and PFBS in soil samples from all AOIs were below the SLs.

2) Develop information to potentially eliminate a release from further consideration because it is determined that it poses no significant threat to human health or the environment.

Five potential PFAS release areas were removed from further consideration based on the data collected during this SI: Prairie Dog Relocation (AOI 1), 1049th Engineer Detachment Building M1 (AOI 2), Burial Trench (AOI 2), Planned Structure Fire (AOI 3), and 1049th Firefighting Training Area 2 (AOI 3). PFOA, PFOS, and PFBS results were below the SLs in soil and groundwater; therefore, these areas pose no significant threat to human health or the environment.

3) Determine the potential need for a removal action.

As described in **Section 2.4**, in 2019, offsite residential drinking water samples were collected due to the exceedance of SLs observed in groundwater during the FTWHH SI. Five properties were selected to be sampled due to their proximity to FTWHH. PFOA, PFOS, and/or PFBS were detected in all five of the drinking water samples collected but were below SLs. Additionally, groundwater samples collected adjacent to the main gate at the MacDonald Property during Mobilization 2 were also below SLs. A removal action is not needed at this time because the drinking water sample results were below the SLs.

4) Collect data to better characterize the release areas for more effective and rapid initiation of a RI.

The geological data collected as part of the SI is consistent with the descriptions of the Quaternary aged alluvium for the area. The alluvium is described as a gray to brown, moderately sorted, pebble to cobble gravel with fine- to coarse-grained sand matrix. Boring logs from AOI 1, AOI 2, and AOI 3 are presented in **Appendix E**. Well borings in AOI 1 along the southern facility boundary are aligned from west to east and likely parallel the depositional direction. Most of the samples were similar in that they contained varying percentages of gravel ranging from 5 to 50% in a sand matrix. The sand matrix size and size range also varied from fine to coarse.

Typically, the gravels observed from ground surface to 5 feet bgs ranged from 0.5 inches to 1 inch in diameter and from 5 to 20 feet bgs the diameter increased to from 0.5 to 4 inches. Between 20 and 30 feet bgs the gravel ranged from 3.5 to >5 inches in diameter and generally the shape of the gravels became more rounded towards the east. At a depth of 50 feet bgs, a white silt/clay layer was encountered in the boring for AOI-MW1. The origin of this distinctive white layer is unknown, but it could possibly be the interface between the younger alluvium (weathered volcanic ash) and the older lakebed sediments. The same white layer was also observed in the boring for AOI3-MW1, and AOI03-MW02. The borings in AOI 2 were generally shallower than in the other two areas because the water table was encountered at a shallower depth at AOI 2. However, a similar pattern of better rounding of gravels in the eastern most boring for AOI 2 was observed.

Depth to water at the facility ranges from approximately 14 to 43 feet bgs. The horizontal gradient in the northern portion of the facility between OBTMW-01 and AOI2-MW1 is 0.013 feet per feet. The horizontal gradient in the southern portion of the facility between AOI1-MW1 and AOI1-MW3 is 0.020 feet per feet.

5) Identify within 4 miles of the installation other potential PFAS sources (fire stations, major manufacturers, other DoD facilities) and receptors, including both groundwater and surface water receptors, to determine whether the ARNG is the likely source of PFAS, or whether there is an offsite source of PFAS responsible for installation detections of PFAS (USEPA, 2005).

Based upon the evaluation of groundwater and soil results in comparison to SLs, in combination with the groundwater flow direction analysis, the source of PFAS contamination is likely attributable to ARNG activities.

6) Determine whether a complete pathway exists between the source and potential receptors and whether ARNG is the likely source of the contamination.

PFOA, PFOS, and PFBS were detected in soil and groundwater at source areas and the facility boundary indicate a potentially complete pathway between source and receptor. However, as described in **Section 2.4**, offsite residential drinking water samples were collected due to the exceedance of SLs observed in groundwater during the FTWHH SI. Five properties were selected to be sampled due to their proximity to FTWHH. PFOA, PFOS, and PFBS were detected in all five of the drinking water samples collected but were below SLs. Additional offsite residential drinking water sampling is recommended due to the SL groundwater exceedance of PFOS at AOI 1 and AOI 2.

8.3 Outcome

The CSMs were revised based on the SI findings. There is potential for exposure to offsite residential drinking water receptors from historical firefighting training activities completed with AFFF at FTWHH. Offsite drinking water sampling was performed at several residences downgradient of AOI 1 and east of the FTWHH property boundary. PFOA, PFOS, and/or PFBS were detected in the drinking water samples but the concentrations did not exceed SLs. Drinking water samples were not collected downgradient of AOI 2. Due to historical firefighting training activities completed with AFFF, there is a potential for exposure to offsite residential drinking water receptors east of the FTWHH property boundary.

Sample chemical analytical concentrations collected during the SI were compared against the project SLs for PFOA, PFOS, and PFBS in soil and groundwater, as described in **Table 6-1**. The following bullets summarize the SI results:

- PFOA, PFOS, and PFBS were detected in soil at AOI 1, AOI 2, and AOI 3; however, results did not exceed SLs.
- PFOA, PFOS, and PFBS were detected in groundwater at AOI 1, AOI 2, and AOI 3. PFOS exceeded SLs at AOI 1 and AOI 2; however, no other results exceeded SLs at AOI 3.

Table 8-1 summarizes the SI results for soil and groundwater. Based on the CSMs developed and revised in light of the SI findings, there is potential for exposure to residential drinking water receptors caused by DoD activities at or adjacent to the facility.

Table 8-2 summarizes the rationale used to determine if an AOI should be considered for further investigation under CERCLA and undergo an RI. Based on the results of this SI, further evaluation is warranted in the RI for AOI 1 and AOI 2.

Table 8-1: Summary of Site Inspection Findings

AOI	Potential PFAS Release Area	Soil – Source Area	Groundwater - Source Area	Groundwater – Facility Boundary
1	Mt. Defensa Avenue Drainage Ditch		•	
1	1049th Engineer Detachment Building 1010		•	NA
1	Prairie Dog Relocation (three locations)		NA	NA
1	1049th Firefighting Training Area 1		•	NA
1	1049th Firefighting Training Area 3		NA	NA
1	MacDonald Property			NA
2	Former Weasel Barn			
2	Excavated Soil from Mt. Defensa Ave Drainage Ditch		•	
2	1049th Engineer Detachment Building M1	•	•	•
2	1049th Firefighting Training Area 4	•	•	NA
3	Planned Structure Fire		•	NA
3	Burial Trench	NA	0	NA
3	1049th Firefighting Training Area 2	0	0	NA

Legend:

NA = Not applicable

= detected; exceedance of the screening levels

e detected; no exceedance of the screening levels

O = not detected

Table 8-2: Site Inspection Recommendations

AOI	Description	Rationale	Future Action
1	Mt. Defensa Avenue Drainage Ditch, 1049th Engineer Detachment Building 1010, 1049th Firefighting Training Area 1, 1049th Firefighting Training Area 3	No exceedances of SL in groundwater at the source area; however, exceedances of SLs in groundwater at the facility boundary. No exceedances of SLs in soil.	Proceed to RI
1	Prairie Dog Relocation (Three Release Areas)	No exceedances of SLs in soil.	No further action
2	Former Weasel Barn, Excavated Soil from Mt. Defensa Ave Drainage Ditch, 1049th Firefighting Training Area 4	No exceedances of SL in groundwater at the source area; however, exceedances of SLs in groundwater at the facility boundary. No exceedances of SLs in soil.	Proceed to RI
2	1049th Engineer Detachment Building M1	No exceedances of SLs in groundwater or soil.	No further action
3	Planned Structure Fire, Burial Trench, and 1049th Firefighting Training Area 2	No exceedances of SLs in groundwater or soil.	No further action

THIS PAGE INTENTIONALLY BLANK

9. References

- AECOM. 2018a. Final Site Inspection Programmatic Uniform Federal Policy-Quality Assurance Project Plan, Perfluorooctane Sulfonic Acid (PFOS) and Perfluorooctanoic Acid (PFOA) Impacted Sites ARNG Installations, Nationwide Contract No. W912DR-12-D-0014/W912DR17F0192. 9 March 2018
- AECOM. 2018b. Final Programmatic Accident Prevention Plan, Perfluorooctane Sulfonic Acid (PFOS) and Perfluorooctanoic Acid (PFOA) Impacted Sites ARNG Installations, Nationwide Contract No. W912DR-12-D-0014/W912DR17F0192. July 2018
- AECOM. 2018c. Final Preliminary Assessment Report, Fort William Henry Harrison, Montana, Perfluorooctane Sulfonic Acid (PFOS) and Perfluorooctanoic Acid (PFOA) Impacted Sites ARNG Installations, Nationwide Contract No. W912DR-12-D-0014/W912DR17F0192. August.
- AECOM. 2018d. Final Site Safety and Health Plan, Fort William Henry Harrison, Montana, Perfluorooctane Sulfonic Acid (PFOS) and Perfluorooctanoic Acid (PFOA) Impacted Sites ARNG Installations, Nationwide Contract No. W912DR-12-D-0014/W912DR17F0192. October.
- AECOM. 2019. Final Site Inspection Uniform Federal Policy-Quality Assurance Project Plan Addendum, Fort William Henry Harrison, Montana, Perfluorooctane Sulfonic Acid (PFOS) and Perfluorooctanoic Acid (PFOA) Impacted Sites ARNG Installations, Nationwide Contract No. W912DR-12-D-0014/W912DR17F0192. January.
- AECOM. 2020. Final Supplemental Site Inspection Uniform Federal Policy-Quality Assurance Project Plan Addendum, Fort William Henry Harrison, Montana, Perfluorooctane Sulfonic Acid (PFOS) and Perfluorooctanoic Acid (PFOA) Impacted Sites ARNG Installations, Nationwide Contract No. W912DR-12-D-0014/W912DR17F0192. October.
- Argonne National Laboratory. 1993. Preliminary Assessment Report for Fort William Henry Harrison, Montana National Guard, Helena, Montana. July.
- Assistant Secretary of Defense. 2019. *Investigating Per- and Polyfluoroalkyl Substances within the Department of Defense Cleanup Program*. 15 October.
- CDM. 2006. Draft Data Summary Report Combat Pistol and M16 Shooting Ranges Fort Harrison Helena, Montana.
- DA. 2016. Army Guidance to Address Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) Contamination. August.
- DA. 2018. Army Guidance for Addressing Releases of Per- and Polyfluoroalkyl Substances. 4 September.
- DoD. 2018a. *General Data Validation Guidelines*. Environmental Data Quality Workgroup. 9 February.
- DoD. 2018b. Department of Defense (DoD) Department of Energy (DOE) Consolidated Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1.1. September.
- DPW. Helena Water Treatment Division. 2012. 2012 Consumer Confidence Report, Water Quality, Treatment Sampling Monitoring.

- FaunaWest Wildlife Consultants. 1998. Relocation of the Fort Harrison Prairie Dog Colony.

 March
- Guelfo, J.L. and Higgins, C.P. 2013. Subsurface transport potential of perfluoroalkyl acids ad aqueous film-forming foam (AFFF)-impacted sites. Environmental Science and Technology 47(9): 4164-71.
- Helena Water Utilities Public Water System. 2004. Source Water Delineation and Assessment Report PWSID# MT0000241.
- Higgins, C. P., and R. G. Luthy. 2006. Sorption of perfluorinated surfactants on sediments. Environmental Science and Technology 40 (23): 7251-7256.
- ITRC. 2018. Environmental Fate ant Transport for Per- and Polyfluoroalkyl Substances. March 2018.
- MTARNG. 2001. Fort Harrison Training Area Integrated Natural Resources Management Plan and Environmental Assessment (2002-2006). October.
- MBMG. 2018. *Online Web Mapping Application*. Accessed via http://data.mbmg.mtech.edu on 22 April 2018.
- MTDEQ. 2006. Helena Valley Ground Water: Pharmaceuticals, Personal Care Products, Endocrine Disruptors (PPCPs) and Microbial Indicators of Fecal Contamination. March.
- Nakata Planning Group, LLC. 2000. Range and Training Land Program Development Plan, Montana Army National Guard. Prepared for Montana Army National Guard. Colorado Springs, CO.
- PRC. 1996. Final Site Inspection Report Fort William Henry Harrison Montana Army National Guard Helena, Montana. September.
- USACE. 2016. Technical Project Planning Process, EM-200-1-2. 26 February 2016.
- United States Census Bureau. 2016. *Population and Housing Unit Estimates*. Available at https://www.census.gov/quickfacts/fact/table/helenacitymontana/PST045217 (Accessed August 4, 2018).
- USEPA. 2001. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part D, Standardized Planning, Reporting, and Review of Superfund Risk Assessments). December.
- USEPA. 2005. Federal Facilities Remedial Site Inspection Summary Guide.
- USEPA, 2006. Guidance on Systematic Planning using the Data Quality Objectives Process. February 2006.
- USEPA. 2016a. *Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA)*. Office of Water (4304T). Health and Ecological Criteria Division, Washington, DC 20460. US USEPA Document Number: 822-R-16-005. May 2016.
- USEPA. 2016b. *Drinking Water Health Advisory for Perfluorooctane Sulfonate Acid (PFOS)*. Office of Water (4304T). Health and Ecological Criteria Division, Washington, DC 20460. US USEPA Document Number: 822-R-16-004. May 2016.
- USEPA. 2017. *National Functional Guidelines for Organic Superfund Data Review*. OLEM 9355.0-136, EPA-540-R-2017-002. Office of Superfund Remediation and Technology Innovation. January.

- USGS. 2018. Environmental Conservation Online System. Accessed 14 February 2019. US Geological Survey (USGS). 1992. *Hydrogeology of the Helena Valley-Fill Aquifer System, West-Central Montana*. April.
- USGS. 2000. Streamflow and Water-Quality Characteristics in the Upper Tenmile Creek Watershed, Lewis and Clark County, West-Central Montana. September.
- USGS. 2001. Streamflow and Water-Quality Characteristics in the Lower Tenmile Creek Watershed, Lewis and Clark County, West-Central Montana, 1997 and 1998. August.
- Westech Environmental Services, Inc. 2017. *Environmental Assessment Freedom's Path at For Harrison Project*. August.
- World Climate. 2019. http://www.worldclimate.com/climate/us/montana/helena (Accessed October, 2019).
- Xiao, F., M. F. Simcik, T. R. Halbach, and J. S. Gulliver. 2015. *Perfluorooctane sulfonate (PFOS)* and perfluorooctanoate (PFOA) in soils and groundwater of a U.S. metropolitan area: Migration and implications for human exposure. Water Research 72: 64-74.

THIS PAGE INTENTIONALLY BLANK

Appendix A Data Validation Reports

Site Inspection Report Fort William Henry Harrison, MT

THIS PAGE INTENTIONALLY BLANK

Site Inspection Report Fort William Henry Harrison, MT

THIS PAGE INTENTIONALLY BLANK

Appendix B Field Documentation

Site Inspection Report Fort William Henry Harrison, MT

THIS PAGE INTENTIONALLY BLANK

Appendix B1 Logs of Daily Notice of Field Activities

Site Inspection Report Fort William Henry Harrison, MT

THIS PAGE INTENTIONALLY BLANK

Date	AECOM Personnel	Weather	Summary Daily Activities	Issues	Progress to Date	Subcontractor(s)/ Visitors
5/31/2019	Bryce Pewonka	49-69°F, overcast	 - AECOM held tailgate meeting. Reviewed demobilization activities. - Policed warehouse area and shipped remaining equipment back to rental agencies. - Returned keys to MTARNG. - Demobilized 		Wells Installed: 6/6 Wells Developed: 6/6 Wells Sampled: 15/16 Soil Samples Collected: 29/29	None
5/30/2019	Chris Beza (SSHO), Luke Councell, and Bryce Pewonka		- AECOM held tailgate meeting. Reviewed scope of work, H&S as well as daily PFAS sampling checklist Collected groundwater samples at OBTMW-01, MW-11, MW-07, AOI2-MW2, and Pump House. Duplicate/MS/MSD collected at the Pump House location The USGS well was just a PVC stickup location to measure water level, and not a properly installed well location; therefore, the location was not sampled Policed the sampling areas/new well locations areas, and began demobilization activities Packaged and shipped samples Inventoried remaining supplies and IDW drums.		Wells Installed: 6/6 Wells Developed: 6/6 Wells Sampled: 15/16 Soil Samples Collected: 29/29	None
5/29/2019	Chris Beza (SSHO), Luke Councell, and Bryce Pewonka	46-74°F, sunny	 - AECOM held tailgate meeting. Reviewed scope of work, H&S as well as daily PFAS sampling checklist. - Collected groundwater samples at AOI1-MW2, AOI3-MW1, MW-6, MW-8, AOI2-MW1, and MW-10. - Collected and shipped the split samples for Battelle at MW-6 and MW-8. 		Wells Installed: 6/6 Wells Developed: 6/6 Wells Sampled: 10/16 Soil Samples Collected: 29/29	None
5/28/2019	Chris Beza (SSHO), Luke Councell, and Bryce Pewonka	40-70°F, sunny	 - AECOM held tailgate meeting. Reviewed scope of work, H&S as well as daily PFAS sampling checklist. - Developed AOI2-MW2, 110 gallons purged, turbidity 18 NTUs. - Collected groundwater samples at FH-02, AOI1-MW1, and BH-02. 		Wells Installed: 6/6 Wells Developed: 6/6 Wells Sampled: 4/16 Soil Samples Collected: 29/29	None

Date	AECOM Personnel	Weather	Summary Daily Activities	Issues	Progress to Date	Subcontractor(s)/ Visitors
5/25/2019	Chris Beza (SSHO) and Luke Councell	48-60°F, overcast/rainy	 - AECOM held tailgate meeting. Reviewed scope of work, H&S as well as daily PFAS sampling checklist. - Developed AOI3-MW1, 25 gallons purged, turbidity 100 NTUs. - Collected groundwater sample at AOI1-MW3. 	None	Wells Installed: 6/6 Wells Developed: 5/6 Wells Sampled: 1/16 Soil Samples Collected: 29/29	None
5/24/2019	Chris Beza (SSHO) and Luke Councell	42-61°F, partly cloudy	 - AECOM held tailgate meeting. Reviewed scope of work, H&S as well as daily PFAS sampling checklist. - Developed AOI2-MW1, 110 gallons purged, turbidity 75 NTUs. - Completed the well surface completions at the newly installed wells. - Moved IDW drums to staging area and reinventoried, 30 drums. - Cascade demobilized from the site. 	None	Wells Installed: 6/6 Wells Developed: 4/6 Wells Sampled: 0/16 Soil Samples Collected: 29/29	Cascade (Austin Morgan and Aaron Bradley) Montana State Interns, Hunter Henschel and Rania Belcourt)
5/23/2019	Chris Beza (SSHO) and Luke Councell	41-61°F, partly cloudy	 AECOM held tailgate meeting. Reviewed scope of work, H&S as well as daily PFAS sampling checklist. Developed AOI1-MW2, 15 gallons purged, turbidity 150 NTUs, recharge very slow. Soil boring samples were collected from AOI2-SB2 at the surface, midpoint, and above the water table. Sample IDs were AOI2-SB2-0-2, AOI2-SB2-8-10, and AOI2-SB2-18-20. Duplicate sample collected at AOI2-SB2-0-2. Monitoring well AOI2-MW2 was installed and screened at 20-30' bgs, grouted, and finished with a 2.0 foot stick-up completion. The well pad and bollards will be installed on Friday. -All samples shipped to the laboratory. 	None	Wells Installed: 6/6 Wells Developed: 3/6 Wells Sampled: 0/16 Soil Samples Collected: 29/29	Cascade (Austin Morgan and Aaron Bradley) Montana State Interns, Hunter Henschel and Renia Belcourt)

Date	AECOM Personnel	Weather	Summary Daily Activities	Issues	Progress to Date	Subcontractor(s)/ Visitors
5/22/2019	Chris Beza (SSHO) and Luke Councell	45-58°F, cloudy	 - AECOM held tailgate meeting. Reviewed scope of work, H&S as well as daily PFAS sampling checklist. - Developed AOI1-MW3, 165 gallons purged, turbidity 4.5 NTUs. - Developed AOI1-MW1, 110 gallons purged, 31 NTUs. - Soil boring samples were collected from AOI3-SB1 at the surface, midpoint, and above the water table. Sample IDs were AOI3-SB1-0-2, AOI3-SB1-18-20, and AOI3-SB1-40-42. - Monitoring well AOI3-MW1 was installed and screened at 48-58' bgs, grouted, and finished with a 2.0 foot stick-up completion. The well pad and bollards will be installed on Friday. -Moved the rig to AOI2-SB2. 		Wells Installed: 5/6 Wells Developed: 2/6 Wells Sampled: 0/16 Soil Samples Collected: 29/29	Cascade (Austin Morgan and Aaron Bradley) Montana State Interns, Hunter Henschel and Renia Belcourt)
5/21/2019	Chris Beza (SSHO) and Luke Councell	45-49°F, overcast, rain late in the day	- AECOM held tailgate meeting. Reviewed scope of work, H&S as well as daily PFAS sampling checklist Collected water levels measurements on existing groundwater monitoring wells Prepared wells installed in February 2019 for development Soil boring samples were collected from AOI2-SB1 at the surface, midpoint, and above the water table. Sample IDs were AOI2-SB1-0-2, AO21-SB1-9-11, and AOI2-SB1-18-20. An equipment blank was collected at this well location Monitoring well AOI2-MW1 was installed and screened at 28-38' bgs, grouted, and finished with a 2.0 foot stick-up completion. The well pad and bollards will be installed on FridayMoved the rig to AOI3-SB1 and began drilling activities.		Wells Installed: 4/6 Wells Developed: 0/6 Wells Sampled: 0/16 Soil Samples Collected: 29/29	Cascade (Austin Morgan and Aaron Bradley)

Date	AECOM Personnel	Weather	Summary Daily Activities	Issues	Progress to Date	Subcontractor(s)/ Visitors
5/20/2019	Chris Beza (SSHO) and Luke Councell	45-50°F, overcast	- AECOM held tailgate meeting. Reviewed scope of work, H&S as well as daily PFAS sampling checklist Re-inventoried the equipment/supplies at the warehouse space on FTWHH Montana 811 completed the relocate and recleared utilities at the remaining three monitoring well locations, prior to arriving at the facility Collected 5 soil samples at AOI 2 using hand auguring techniques. Sample IDs were AOI12-SS1-0-2, AOI12-SS2-0-2, AOI12-SS3-0-2, AOI12-SS4-0-2, and AOI12-SS5-0-2. A duplicate was collected at AOI2-SS2. A matrix spike/matrix spike duplicated was collected at AOI2-SS4. A field rinsate blank was collected at AOI2-SS5 During the February 2019 sampling event, the sample location for AOI-SS1 was relocated due to snow volume; however, after snow melt MTARNG indicated that the revised location was very close to the road and we may have collected only fill. Therefore, a surface soil sample was recollected at AOI-SS01-0-2R.		Wells Developed: 0/6 Wells Sampled: 0/16 Soil Samples Collected: 29/29	Montana State Interns, Hunter Henschel and Renia Belcourt) Cascade (Austin Morgan and Aaron Bradley)
5/19/2019	Chris Beza (SSHO) and Luke Councell	47°F, sunny	 - Drillers arrived at 1400 and readied the drilling - All team members mobilized to Helena, Montana. 	None	Wells Installed: 0/6 Wells Developed: 0/6 Wells Sampled: 0/16 Soil Samples Collected: 24/29	None

Date	AECOM Personnel	Weather	Summary Daily Activities	Issues	Progress to Date	Subcontractor(s)/ Visitors
2/20/2019	Jennifer Zorinsky, Chris Beza (SSHO), and Luke Councell	10-20°F, sunny, cold	- AECOM held tailgate meeting. Reviewed scope of work, H&S as well as daily PFAS sampling checklist Soil boring samples were collected from AOI1-MW3 at the surface, midpoint, and above the water table. Sample IDs were AOI1-SB3-0-2, AOI1-SB3-18-20, and AOI1-SB3-38-40. A duplicate was collected at AOI1-SB3-18-20 AOI1-MW3 static water level measured at approximately 43' bgs. Well was screened at 40-50' bgs, grouted, and finished with a flush-mount completionCollected 1 soil sample at AOI1-SS6 using rotosonic techniquesDiscarded groundwater samples collected from MW8, MW10, MW11, and OBTMW-01 and the associated field blank with the purge water IDWCollected GPS coordinates on all remaining sample locations and removed pin flagsPacked and shipped all equipment and samplesMoved all drums to the designated staging area. All drums were placed on pallets and are not blocking MTARNG equipmentPicked up decon pad and cleaned work areas.		Wells Installed: 3/6 Wells Developed: 0/6 Wells Sampled: 0/16 Soil Samples Collected: 24/29	Cascade (Brandon Pizzuti, Aaron Bradley, Frank Scott)
2/19/2019	Jennifer Zorinsky, Chris Beza (SSHO), and Luke Councell	-15-15°F, winter weather advisory, very cold	 AECOM held internal discussions regarding temperature duress to personnel and equipment. Fieldwork for the day was cancelled due to safety concerns. 	will demobilize from the field as soon as drilling and well installation at AOI1-MW3 is	Wells Installed: 2/6 Wells Developed: 0/6 Wells Sampled: 4/16 Soil Samples Collected: 23/29	None

Date	AECOM Personnel	Weather	Summary Daily Activities	Issues	Progress to Date	Subcontractor(s)/ Visitors
2/18/2019	Jennifer Zorinsky, Chris Beza (SSHO), and Luke Councell	-10-0°F, winter weather advisory, very cold	- AECOM held tailgate meeting. Reviewed scope of work, H&S as well as daily PFAS sampling checklistSampled existing groundwater wells MW10, MW-10-19A; MW11, MW-11-19A; and OBTMW-01, OBTMW-01-19A.	-Groundwater was freezing in tubing upon exiting the well casing. The pump cycle was shortened and the tubing from the well casing to the YSI was placed in a bucket of warm water to prevent freezingRotosonic drill rig would not start. Drillers suspected the batteries were dead due to the very cold temperatures and attempted to charge the batteries using their truck battery. After 4 hours without success starting the rig, the drillers purchased new batteries; however, the rig would still not fully turn over. Drillers purchased a torpedo heater and heated the engine for approximately 2.5 hours. Rotosonic drill rig started at 17:30. Total downtime was approximately 10 hours.	Wells Installed: 2/6 Wells Developed: 0/6 Wells Sampled: 4/16 Soil Samples Collected: 23/29	Cascade (Brandon Pizzuti, Aaron Bradley, Frank Scott)

Date	AECOM Personnel	Weather	Summary Daily Activities	Issues	Progress to Date	Subcontractor(s)/ Visitors
	and Luke Councell	-5-25°F, temperatures dropping throughout the day, cold	core barrel (AOI1-MW3-EB). - Finished well completions at AOI1-MW1 and AOI1-MW2 by installing protective casings and bollards. -Sampled existing groundwater well MW08, MW8-19A. - Began well boring at AOI1-MW3; cored to 40'. -Collected a field blank, FIELDBLANK-021619.	tubing upon exiting the well casing. The pump cycle was shortened and the tubing from	Wells Installed: 2/6 Wells Developed: 0/6 Wells Sampled: 1/16 Soil Samples Collected: 23/29	Cascade (Brandon Pizzuti, Aaron Bradley, Frank Scott)
	and Luke Councell	sunny	- AECOM held tailgate meeting. Reviewed scope of work, H&S as well as daily PFAS sampling checklist Soil boring samples were collected from AOI1-MW2 at the surface, midpoint, and above the water table. Sample IDs were AOI1-SB2-0-2, AOI1-SB2-15-17, and AOI1-SB2-28-30 AOI1-MW2 static water level measured at 33.45' bgs. Well was screened at 30-40' bgs and groutedDeconned drilling equipment and setup at AOI1-MW3.		Wells Installed: 2/6 Wells Developed: 0/6 Wells Sampled: 0/16 Soil Samples Collected: 23/29	Cascade (Brandon Pizzuti, Aaron Bradley, Frank Scott); Montana DEQ (Scott Gestring and Pat Skibicki) on-site from 11:30-12:30.

Date	AECOM Personnel	Weather	Summary Daily Activities	Issues	Progress to Date	Subcontractor(s)/ Visitors
2/14/2019	Jennifer Zorinsky, Chris Beza (SSHO), and Luke Councell		checklist. - Collected 4 soil samples using air knife techniques at 4 locations. One sample was collected from 0-2' at AOI1-SS1, AOI1-SS2, AOI1-SS4, and AOI1-SS5. -An equipment blank was collected on the jackhammer bit at AOI1-SS1. -Collected 1 soil sample with MS/MSD at AOI1-SS3 using rotosonic techniques. - AOI1-MW1 static water level measured at 40.45' bgs. Well was screened at 45-55' bgs and grouted. - Began well boring at AOI1-MW2; cored to 20'.	bgs making air knifing and sampling difficultAir knifing and hand augering was not possible from 0-2' due to frozen ground. Surface soil locations were jackhammered from 0-2'. Well installation was drilled without hand augeringAOI1-SS1 (surface soil upgradient of the VA) was moved to the west with	Wells Installed: 1/6 Wells Developed: 0/6 Wells Sampled: 0/16 Soil Samples Collected: 23/29	Cascade (Brandon Pizzuti, David Donnelly, Aaron Bradley, Frank Scott, Caleb Trusty)

Date	AECOM Personnel	Weather	Summary Daily Activities	Issues	Progress to Date	Subcontractor(s)/ Visitors
2/13/2019	Jennifer Zorinsky, Chris Beza (SSHO), and Luke Councell	10-25°F, sunny, cold, snow starting at 17:00	checklist. - Collected 10 soil samples using air knife techniques at 5 locations. One sample was collected from 0-2' and one sample from 2-4' at AOI2-HA1, AOI2-HA2, AOI2-HA3, AOI2-HA4, and AOI2-HA5. A duplicate sample was collected at AOI2-HA2-2-4. An MS/MSD was collected at AOI2-HA2-0-2. -Equipment blanks were collected on the digging bar at AOI2-HA1-0-2 and on the soil sampling device at AOI2-HA1-2-4. - AOI1-MW1 was drilled to 60' using rotosonic techniques. Water table was encountered at approximately 45-50'. Well location was left open and covered with a cone overnight to check static water level in the morning. Well will most likely not be a good producer.	bgs making air knifing and sampling difficult Core barrel became stuck at 43' bgs during drilling at AOI1-MW1. Downtime was approximately 1 hourWell at AOI1-MW1 does not appear to be a good producer. Borehole left open and covered with a cone overnight to check static water level in the morningAir knifing and hand augering was not possible from 0-2' due	Wells Developed: 0/6 Wells Sampled: 0/16 Soil Samples Collected:	Cascade (Brandon Pizzuti, David Donnelly, Aaron Bradley, Frank Scott, Caleb Trusty)
2/12/2019	Jennifer Zorinsky, Chris Beza (SSHO), and Luke Councell	5-30°F, mostly cloudy, cold	checklist Collected 8 soil samples using air knife techniques at 4 locations. One sample was collected from 0-2' and one sample from 2-4' at AOI3-HA1, AOI1-HA1, AOI1-HA2, and AOI2-	- The ground is frozen from 1-2' bgs making air knifing and sampling difficult Pressure washer and steamer experienced freezing during decon due to weather. Received permission from MTARNG to store this equipment inside.	Wells Developed: 0/6 Wells Sampled: 0/16 Soil Samples Collected: 8/29	Cascade (Brandon Pizzuti, David Donnelly, Aaron Bradley, Frank Scott, Caleb Trusty)

Log of Daily Notice of Field Activity ARNG PFAS, Supplemental Site Inspection Fort William Henry Harrison, Helena, Montana

Date	AECOM Personnel	Weather	Summary Daily Activities	Issues	Progress to Date	Subcontractor(s)/ Visitors
10/14/2020	- Bradley Ruff (SS) - Chris Beza (SSHO) - Jack Hollingsworth	Mostly cloudy, 48°, spotty showers, winds 20 mph E	 Collected two low-flow groundwater samples: AOI01-MW04 and AOI03-MW02. Surveyed top of casing and ground surface elevation for the five newly installed monitoring wells. Completed drum inventory: 11 liquid IDW drums and 18 solid IDW drums. Stored extra buckets and equipment in warehouse; performed last of housekeeping. AECOM mobilized off-site. 	- None	- Soil Borings: 5/5 - Soil HA Locations: 17/17 - Soil Samples: 30/30 - Permanent Wells: 5/5 - Developed Wells: 5/5 - Groundwater Samples: 15/15	- None
10/13/2020	- Bradley Ruff (SS) - Chris Beza (SSHO) - Jack Hollingsworth	Cloudy, 54°, afternoon showers, winds 3 mph E	- Completed development of AOI01-MW04 Collected three low-flow groundwater samples: AOI01-MW06, AOI2-MW2, and AOI03-MW02 Performed site wide synoptic gauging at 25 monitoring wells.	- None	- Soil Borings: 5/5 - Soil HA Locations: 17/17 - Soil Samples: 30/30 - Permanent Wells: 5/5 - Developed Wells: 5/5 - Groundwater Samples: 13/15	- None
10/12/2020	- Bradley Ruff (SS) - Chris Beza (SSHO) - Jack Hollingsworth	Cloudy, 52°, winds 15 mph E	- Completed development at AOI01-MW05, AOI01-MW06, and AOI02-MW03 Began development of AOI01-MW04 Collected three low-flow groundwater samples: AOI01-MW2, AOI01-MW05, and AOI2-MW1.	- None	- Soil Borings: 5/5 - Soil HA Locations: 17/17 - Soil Samples: 30/30 - Permanent Wells: 5/5 - Developed Wells: 5/5 - Groundwater Samples: 10/15	- None
10/11/2020	- Bradley Ruff (SS) - Chris Beza (SSHO) - Jack Hollingsworth	Partly cloudy, cooler, 54°, winds 19 mph E	- Completed development at AOI03-MW2. Well was continually surged and purged dry three times removing approximately 21 gallons of water. - Began development of AOI01-MW5 and AOI01-MW06. - Collected three low-flow groundwater samples.	- None	- Soil Borings: 5/5 - Soil HA Locations: 17/17 - Soil Samples: 30/30 - Permanent Wells: 5/5 - Developed Wells: 2/5 - Groundwater Samples: 7/15	- None
10/10/2020	- Bradley Ruff (SS) - Chris Beza (SSHO) - Jack Hollingsworth	Sunny, warm, 77°, winds 15 mph E	-Mobilized to AOI02-MW3 and advanced boring via HSA. Two subsurface soil samples were collected: AOI02-MW3 was constructed with a 10 ft screen, filter pack, and bentonite chips to surface. The surface completion was a 2 ft x 2 ft pad with 8 inch monitoring well cover and skirt. All soil sampling, borings, and permanent monitoring well construction complete. - Began development of AOI3-MW2. Well was surged and purged dry three times removing approximately 15 gallons of water. Development will continue tomorrow. - Collected two low-flow groundwater samples at BH-02 and AOI01-MW3. - Cascade mobilized offsite.	- None	- Soil Borings: 5/5 - Soil HA Locations: 17/17 - Soil Samples: 30/30 - Permanent Wells: 5/5 - Developed Wells: 1/5 - Groundwater Samples: 4/15	- Cascade Team (Orville, Dax, and Jack)
10/9/2020	- Bradley Ruff (SS) - Chris Beza (SSHO) - Jack Hollingsworth	Sunny, warm, 77°, winds 8 mph N	-Completed well construction at AOI01-MW5 with a 10 ft screen (27-37 ft bgs), filter pack, and bentonite chips to surface. The surface completion was a 2 ft x 2 ft pad with 8 inch monitoring well cover and skirt. -Mobilized to AOI01-MW6 and advanced boring via HSA to 42 feet bgs. Two subsurface soil samples were collected: one at 15-17 ft bgs and another 30-32 ft bgs. AOI01-MW6 was constructed with a 10 ft screen (32-42 ft bgs), filter pack, and bentonite chips to surface. The surface completion was a 2 ft x 2 ft pad with 8 inch monitoring well cover and skirt. - Mobilized to AOI01-MW4 and began advancing boring. - Collected two low-flow groundwater samples at MW-11 and AOI3-MW1. - Mark Leeper (ARNG G9) mobilized offsite.	- None	- Soil Borings: 4/5 - Soil HA Locations: 17/17 - Soil Samples: 28/30 - Permanent Wells: 3/5 - Developed Wells: 0/5 - Groundwater Samples: 2/15	- Cascade Team (Orville, Dax, and Jack) - Mark Leeper

Log of Daily Notice of Field Activity ARNG PFAS, Supplemental Site Inspection Fort William Henry Harrison, Helena, Montana

Date	AECOM Personnel	Weather	Summary Daily Activities	Issues	Progress to Date	Subcontractor(s)/ Visitors
10/8/2020	- Bradley Ruff (SS) - Chris Beza (SSHO) - Jack Hollingsworth	Sunny, warm, 81°, winds 5-10 mph ENE	 Advanced boring AOI03-MW2 via HSA to 60 feet (ft) below ground surface (bgs). No additional soil samples were collected (per the QAPP). AOI03-MW2 was constructed with a 10 ft screen (50-60 ft bgs), filter pack, and bentonite chips to surface. The surface completion was a 2 ft x 2 ft pad with 8 inch monitoring well cover and skirt. Mobilized rig to AOI01-MW5 and advanced boring via HSA to 45 ft bgs. Two subsurface soils samples were collected: one at 13-15 ft bgs and one at 33-35 ft bgs. Attempted to set well at 45 ft bgs, but encountered heaving sands. Cascade suggested the well sit overnight and attempt to complete the following morning. 		- Soil Borings: 2/5 - Soil HA Locations: 17/17 - Soil Samples: 24/30 - Permanent Wells: 1/5 - Developed Wells: 0/5 - Groundwater Samples: 0/15	- Cascade Team (Orville, Dax, and Jack) - Mark Leeper
10/7/2020	- Bradley Ruff (SS) - Chris Beza (SSHO) - Jack Hollingsworth	Sunny, warm, 74°, winds 5 mph WNW	 Completed utility identification and pre-clearing. AECOM completed the utility checklist and received approval to proceed with mechanized drilling. Collected the remaining 11 surface soil samples from AOI 1 and AOI 3. Complete pre-clearing all five boring/monitoring well locations. Mobilized HSA drill rig to AOI03-MW2 and began drilling. Advanced 40 ft bgs before end of the day. Scott Gestring and Terri Mavencamp (MTDEQ) visited the site to oversee soil sampling and drilling. 	- None	- Soil Borings: 0/5 - Soil HA Locations: 17/17 - Soil Samples: 22/30 - Permanent Wells: 0/5 - Developed Wells: 0/5 - Groundwater Samples: 0/15	- Cascade Team (Orville, Dax, and Jack) - Mark Leeper - Scott Gestring - Terri Mavencamp
10/6/2020	- Bradley Ruff (SS) - Chris Beza (SSHO) - Jack Hollingsworth	Sunny, warm, 82°, winds 15 mph WNW	 Cascade drill team arrives onsite. Utility identification and pre-clearing continued. Collected 10 surface soil samples from borings and surface soil locations at FTA 4 (AOI 2), FTA 2 (AOI 3), and the McDonald Property (adjacent to Fort Harrison Main Gate). Scott Gestring (MTDEQ) visited the site to oversee pre-clearing and the proposed sample locations. Team decision made to shift AOI01-MW4 and AOI01-SS7 to the east of the proposed locations to be off of the Navy property. See 'Issues' for further details. 	- Two samples at FTA 1 were located within the Navy property and were moved to the east, back on Fort Harrison property. This change was documented in FCR001 and is attached.	- Soil Borings: 0/5 - Soil HA Locations: 6/17 - Soil Samples: 10/30 - Permanent Wells: 0/5 - Developed Wells: 0/5 - Groundwater Samples: 0/15	- Cascade Team (Orville, Dax, and Jack) - Mark Leeper - Scott Gestring
10/5/2020	- Bradley Ruff (SS) - Chris Beza (SSHO) - Jack Hollingsworth	Sunny, warm, 75°	- AECOM performed site walk with Mark Leeper (ARNG G9), LTC Adel Johnson (MTARNG), and Wade Juntunen (MTARNG) and flagged locations across the facility Began utility identification and clearing (will be completed tomorrow).	- None	- Soil Borings: 0/5 - Soil HA Locations: 0/17 - Soil Samples: 0/30 - Permanent Wells: 0/5 - Developed Wells: 0/5 - Groundwater Samples: 0/15	- Mark Leeper

Notes

AOI = Area of Interest ARNG = Army National Guard bgs = below ground surface FCR = field change request

FTA = fire training area

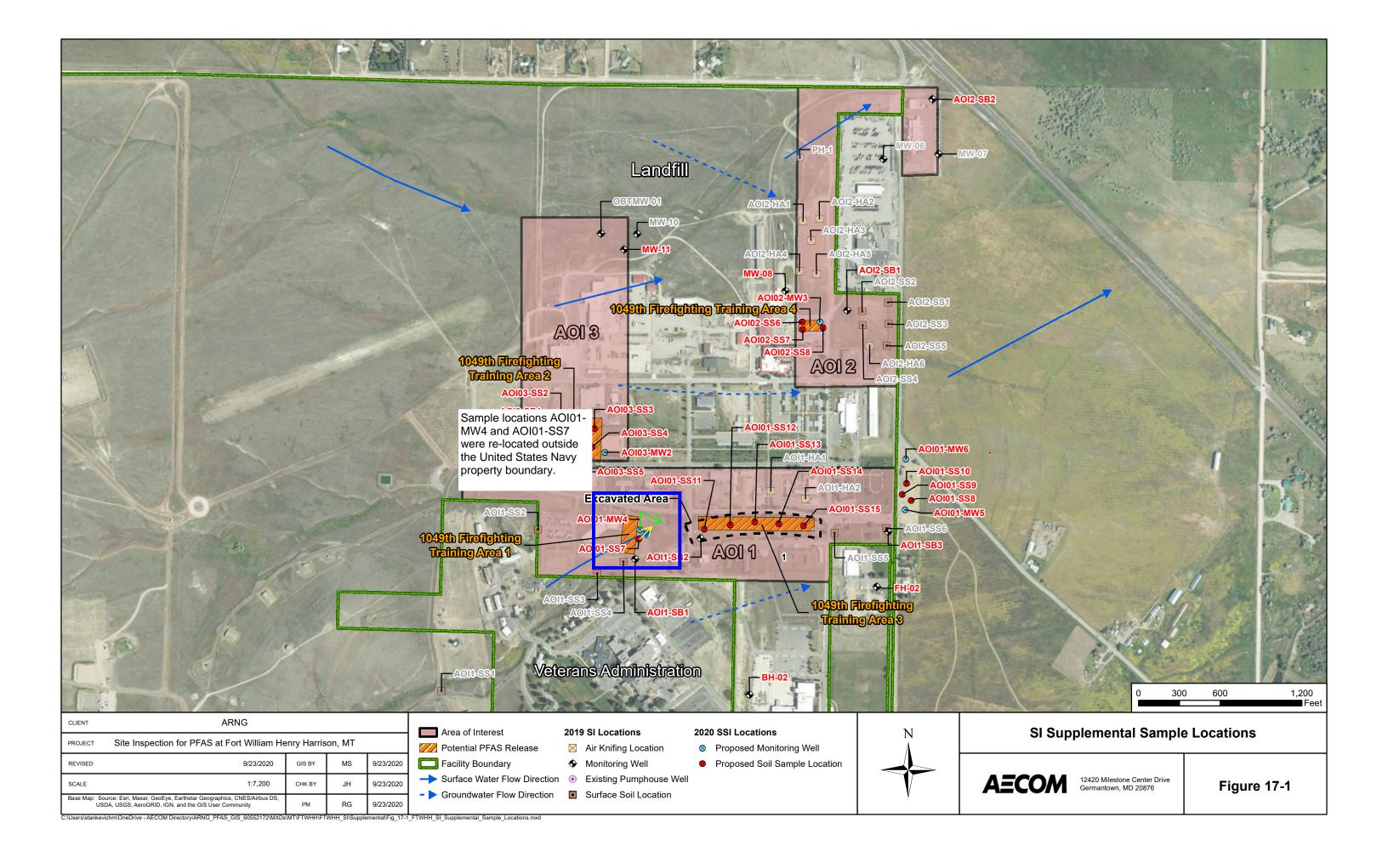
ft = feet/foot

HSA = hollow stem auger

LTC = Lieutenant Colonel

MTARNG = Montana Army National Guard

MTDEQ = Montana Department of Environmental Quality


mph = miles per hour

SS = Site Supervisor

SSHO = Site Safety and Health Officer

AECOM Technical Services Inc. Field Change Request Form

Report Number:	FCR001		Location: FTWHH, MT	
Document Title:	FTWHH SSI QAPP Addendum, Final		Contract Number:	W912DR-12-D-0014 DO: W912DR17F0192
Description of Field Change: 1. Sam local			ple locations. ble locations AOI01-M\ ed outside the United S dary.	W4 and AOI01-SS7 were re- States Navy property
Proposed Disposit	ion:	See attached	map for revised samp	le locations.
Submitted by: Andrew Borden			Date: 10/06/	/2020
Completed by: Jady Harrington			Date: 10/06/	/2020
Verified by (SI Task Manage	er): Jady Ha	ırrington	Date: _10/06/	/2020

Appendix B2 Sampling Forms

Site Inspection Report Fort William Henry Harrison, MT

THIS PAGE INTENTIONALLY BLANK

AECOM

Monitoring Well Development Form Sampled

	Site: F	'HH		The state of the s		LocID: A	HOT1-MI	NI			Date: 5-	-28-19	
LOCATION		me: ARN	G PFAS			Project Num	ber: 6055	2172			Recorded By:	CB Checked	Ву:
EQUIPMENT	Developme	ent Equipment: el Indicator Type	Blado	ter Pum.	f	Wa	ater Quality Mete	er Type: 【	1-52				
	PID Type/I						uipment Decon:						
	Casing ID (inches) [a]:	Z		Unit	Casing Volum	ne (gallon/linear	foot) [b]:				T BTOC) [c]: 31.41	•
WELL INFO		Depth (FT BTO andition of Well:			Wate	r Column Thi	ckness (FT) [d-c]:		Well Vo	olume (gallon) {[o	d-c] x b}:	
CASING INFO	Casing ID	(inches) [a]: g Volume (gal/li				1.5 2.0 0.09 0.16	2.2 3.0 0.20 0.37	4.0 0.65	4.3 5.0 0.75 1.0	6.0 1.5	7.0 8.0 2.0 2.6	Ambient PID (ppm): Well Head PID (ppm):	ø
Date (MM/DD/YY)	Time (24 hr)	Method (pump, surge, bail)	Depth to Water	Volume Removed (2) (gallons)	Pumping Rate ∧∧(Lpm)	Temp (°C)	Specific Conductivity (mS/cm)	рН	DO (mg/L)	Turbidity (NTU)	Sediment (mL/L)	Comment	
5-28-19	1202	Bladder	31.40	φ	95	13.98	0.784	7.54	7.45		190		
•	1210			0.7	95	13.84	0.700	7.52	7,56	124.6	Z09		*
	1220		31.41	1.7	95	13.83	0.806	7.53	7.66	90.4	210		
	1230		31.42	2.7	95	14,21	0.835	7.51	8.51	80.0	208		
	1240		31.40	4.0	230	13,14	0.898	7.51	8.21	40.6	216		
	1290		16	6.0	11	12.82		7.47	8.20	33.4			
21	1300		11	8.0	1(12.89	0.930	7.50	8.32	26.1	227		
	1305		Li	9.0	11	12.98	0.935	7.49		25.0			
	1310	<u></u>	11	10.0	11	12.95	0.944	7.47	8.24	24.8	231		
						0	131	2					
9 9					za mgi	eliv	ne 131						
, , , , , ,						2					2	-	9
								×					

Monitoring Well Development Form Sampled

Page 1 of ______

-29-19
By: CB Checked By:
21 OCT
r (FT BTOC) [c]: 31.95
) {[d-c] x b}:
) Ambient PID (ppm):
Ambient PID (ppm): Well Head PID (ppm):
6
Comment
e

sampled

Page 1 of _

7-66					7						4		•				raye I UI_
	Site: F	EHH				LocID): A	OI1-1	1W3						25-19		
LOCATION	Project Na	me: ARN	G PFA	5		Proje	ct Num	ber: 60	55217	2		*********	Recor	ded By:	CB	Checked	Ву:
		ent Equipment:		der Pu	WP	************											
EQUIPMENT		el Indicator Type		(X-) 1 V			Wa	iter Quality N	leter Type:	V-52	2	ē.			5		
Jacobs de Wald	PID Type/I	D#: Φ					Equ	uipment Dec	on:								
			2		U	nit Casing	Volum	e (gallon/line	ear foot) [b]:	0.16	3	Initial D	epth to V	Nater (F	T BTOC) [c]:	32.6	01
WELL		Depth (FT BTO						ckness (FT)							d-c] x b}:		
INFO		ondition of Well:						- Au									
CASING	Casing ID	(inches) [a]:				1.5	2.0	2.2	.0 4.0	4.3	5.0	6.0	7.0	8.0	Ambient Pl		
INFO		ng Volume (gal/l	inear foot) [b]:			0.09	0.16	0.20 0	37 0.65	0.75	1.0	1.5	2.0	2.6	Well Head I	PID (ppm):	φ
Date (MM/DD/YY)	Time (24 hr)	Method (pump, surge, bail)	Depth to Water (BTOC)	Volume Removed ((gallons)	Pumpin Rate (/(Lpm)	g Ter		Specific Conductivit (mS/cm)	у рН	DC (mg/		urbidity (NTU)	-Sedi -(ml	ment		Comment	
16:45	5-25-19	-1 (1	32.66	Ø	80	11.	34	1.37		7.6	6 7	7000	14	13		-	
1655	1		i i	0.8	80	10	.8Z	1.41	7.18			1000	13				
1705			32.68	1.8	100		31	1.42	7.18			46	12				
1715			11	2.8		-	30	1.40	7.25			550	-	31			
1725			11	3.8			,35	1.39	7.28	-		346		-2		A	
1735			(1	4.8			.30	1.42	7.26		-	331		15			
17:45			11	5.8	-		25	1.42	7.21			203	14	4	9	<u> </u>	
1755			(1	6.8 7.8	-		.27	1.42	7.24			144		59			
1805			11	8.8).19	1.42	7.26			99		59			
1815			11	9.8			14	1.42	7.2			85.1		5 9			
1835			11	10.8			.15	1.42	7.23	-	30	65.4	16	52			
1845			11	11.8			0.17	1.42	7.26	-	9	56H	, ,	5			
1850			11	12.8			.15	1.42	7.25	7.1	9	34.5		39			
1855	-	1	11	13.8	1	10	.15	1.42	7.26	7.1	0	54.5	16	56	*		
								100									
				- 5	ampl.	eTi	MIL	: 190	0								
DEVEL ORMENT	CONTEDIAL	leacurements: O	von 5 minutes: [construction	n is remove	ed and pa	rameters	are with	ain the following o	criteria for 3 c	-

sampled

Page 1 of _____

						T						Date:	_	28-19		
LOCATION	Site: F	'HH				LocID	: 5	1H-Z	-01-	~					Checked	I Rv:
LOCATION	Project Na		VG PFAS			Projed	ct Numb	oer: 6055	12112	4		Recor	ded By:	C\$	Checked	т Бу.
	Developme	ent Equipment:	Bladd	er Pum	ρ					1						
EQUIPMENT	Water Leve	el Indicator Type	e/ID#:		1		Wat	ter Quality Mete	er Type: L	1-52						1
	PID Type/I	D#:					Equ	iipment Decon:								
	Casing ID ((inches) [a]:	2		Ur	nit Casing	Volume	e (gallon/linear	foot) [b]:		Initial D	epth to	Water (F	T BTOC) [c]:	24.05	5'
WELL INFO		Depth (FT BTO		31	W	ater Colur	nn Thic	ckness (FT) [d-c	:]:		Well Vo	lume (g	allon) {[d	d-c] x b}:		
INFO	Ground Co	ondition of Well:	Flushn	rount		***********			**************	************						
CASING	Casing ID	(inches) [a]:			(23,23,23,23,24,24	1.5	2.0	2.2 3.0	4.0	4.3 5.0	6.0	7.0	8.0	Ambient P		
INFO		g Volume (gal/li	near foot) [b]:			0.09	0.16	0.20 0.37	0.65	0.75 1.0	1.5	2.0	2.6	Well Head	PID (ppm):	\mathcal{P}
Date (MM/DD/YY)	Time (24 hr)	Method (pump, surge, bail)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate (//)(Lpm)	Ter (°0	mp C)	Specific Conductivity (mS/cm)	рН	DO (mg/L)	Turbidity (NTU)	-Sedi (m	Priment		Comment	
52819	1540	Bladder	24.23	Φ	Z80	12.	96	1.41	7.39	10,40	17.8		27_			
1	1550		24.20	2.8			59	1.43	7.31	10.20	13,9		28			
	1600		24.22	5.6			48	1.43	7.33	9.92	10.0		35			
	1610		11	8.4			50	1.42	7.27		3.7	23				
	1615		11	11.2			,01	1.43	7.27		5,0	2:				
	1620		11	12.6	-4-)1.	91	1.43	7.32	9.80	Φ	lone	38_			*
											- P					
							. T	-(1670	5					TI M CONTRACTOR OF THE CONTRAC	
					59	MY 16	2 +	ime	102.							
																,
											-					
											-					
								ded during borin	a and wall or	opetruction is rer	noved and n	arameter	e are with	nin the following	criteria for 3	consecutive

AECOM

Monitoring Well Development Form

Sampled

Page 1 of 1

	Site: F	HH					FH-Z						28-19		
LOCATION		me: ARNO	3 PFAS			Project Num	ber: 603	5521	72		Reco	rded By:	CB	Checked By:	******
		ent Equipment:	Blad	And that that that that that that the	NMP										
EQUIPMENT	Water Leve	el Indicator Type					ater Quality Me		1-52						
	PID Type/	D#: 🍑				Eq	uipment Decor): 							
***************************************	Casing ID ((inches) [a]:	2		Unit	Casing Volum	ne (gallon/linea	r foot) [b]:		Initial D	epth to	Water (F	T BTOC) [c]:	34.34	
WELL INFO	Total Well	Depth (FT BTO	C) [d]: 60.	00'	Wate	er Column Thi	ckness (FT) [d	-c]:		Well Vo	olume (g	gallon) {[c	d-c] x b}:	*	
	Ground Co	ondition of Well:	9tic Fu	4								aaaaaa	***************************************		
CASING		(inches) [a]:				1.5 2.0	2.2 3.0		4.3 5.0	6.0	7.0	8.0 2.6	Ambient Pl Well Head		
INFO	Unit Casin	g Volume (gal/li		***************************************		0.09 0.16	0.20 0.3	7 0.65	0.75 1.0	1.5	2.0	2.0 P/P liment	Well Fleau	ть (ррп).	
Date (MM/DD/YY)	Time (24 hr)	Method (pump, surge, bail)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate (Lpm)	Temp (°C)	Specific Conductivity (mS/cm)	рН	DO (mg/L)	Turbidity (NTU)	Sed (m	liment		Comment	
858 -	->	Bladder	34.36	0.0	ϕ		Charles and the Control of the Contr						579,	rt pump	
907 -	->		34,35	0.1	90	13.07	1.67	7.01	10.00	169		89			
910 -	->		34.36	0.4	90	12.29	1.74	7.01	10.70	167		95		1000	
920 -	->		34,43	1.9	150	11.70	1.77	7.18	10.64	55.8		87 84			
5-28-19	930		34.48	3.4 4.9		11.53	1.78	7.21	10.38	50 55		35			
	940		34.45 34.47	6.4		11.45	1.78	7.22	10.89	54	29	34			
	955		34.46	7,2		11.49	1.78	7.27		43	28	36		<u></u>	
	1000		34.46	8.0	上	11.49	1.78	7.27	10,88	36,8		35			
120004	,,,,,														
			0.5			i		00-							
					amp	le 1	me	005						· · · · · · · · · · · · · · · · · · ·	
					1										
															-
											<u>.</u>			11 - i - f - O i - o	

Monitoring Well Development Form Sampled

Page 1 of ____

LOCATION	Site:	FTWHH				LocID:	1012-MI	NI			Date: 5-2	9-19
LOCATION	Project Na	me: ARNO	SPFAS			Project Num	ber: 6059	2172	<u> </u>		Recorded By:	Checked By:
	Developme	ent Equipment:	Blade	erfun	14					indialiniadania		
EQUIPMENT	Water Lev	el Indicator Type	e/ID#:			Wa	ter Quality Met	er Type: 🕽	Horiba	U-5Z		
	PID Type/I	D#: Ф.	φ			Equ	uipment Decon					
	Casing ID	(inches) [a]:	2		Unit	Casing Volum	e (gallon/linear	foot) [b]:		Initial D	epth to Water (F	T BTOC) [c]:
WELL INFO		Depth (FT BTO	C) [d]: 38	·	Wate	er Column Thic	ckness (FT) [d-	C]:		Well Vo	lume (gallon) {[c	d-c] x b}:
***************************************	Ground Co	ondition of Well:										
CASING		(inches) [a]:				1.5 2.0 0.09 0.16	2.2 3.0 0.20 0.37		4.3 5.0 0.75 1.0	6.0 1.5	7.0 8.0 2.0 2.6	Ambient PID (ppm): Well Head PID (ppm):
INFO	Unit Casir	ng Volume (gal/li		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX				0.05			1	Well Flead Fib (ppill).
Date (MM/DD/YY)	Time (24 hr)	Method (pump, surge, bail)	Depth to Water (BTOC)	Volume Removed (gallens)	Pumping Rate (Lpm)	Temp (°C)	Specific Conductivity (mS/cm)	рН	DO (mg/L)	Turbidity (NTU)	Sediment (mL/L) OR P	Comment
5/29/19	1330	low flow Yad.	22.25	1.5	0.3	11.55	1.47	7.15	10.19	8.23	45	
	1335	LI	22.25	2.0	0.3	11.47	1.47	7.20	10.19	4.73	46	
	1340	t t	22.25	2.5	0.3	11.46	1.47	7.21		3.20	47	
	1345	11	21.25	3.0	0.3	11.38	1.47	7.24		7.67	46	
	1350	t /	21.25	3.5	0.3	11.50	1.46	1. L1	10.51	2.40	16	-
	S 2 ha	10 60A	0 13	55 t	ms/ms							
	Sam	Da Gor	(),	, ,	1 1/1/15							
							=					
												2
		0										
			-									

Page 1 of ____

4-60	// V I					_				1 2				2 10		Tage For
LOCATION	Site: FT	-WHH						OIZ					Date: 5-		Chaalaad	D
LOCATION	Project Nar	ne: ARNG	- PFAS			Proje	ect Num	ber: 🍃	055	52172			Recorded By	· LC	Cnecked	By: B
	Developme	nt Equipment:	Bladd	erpum	P											
EQUIPMENT		el Indicator Type		•	1						Horiba	1 U-52	2			
	PID Type/II	D#:					Equ	uipment C	Decon:							
	Casing ID (inches) [a]:	2		Unit	Casin	g Volum	e (gallon	/linear	foot) [b]:			epth to Water		14.27	
WELL INFO	Total Well	Depth (FT BTO	C) [d]: 30 '		Wat	er Colu	ımn Thi	ckness (F	·T) [d-c	津		Well Vo	olume (gallon) {	[[d-c] x b}:		
INI O	Ground Co	ndition of Well:				NAMES OF THE PERSON OF THE PER	**********	***********	33333337							
CASING	Casing ID	(inches) [a]:	<u> </u>	.,.,.,.,.,.,.,.,.,.		1.5	2.0	2.2	3.0	4.0	4.3 5.0	6.0	7.0 8.0		PID (ppm): d PID (ppm):	A
INFO	Unit Casin	g Volume (gal/li	near foot) [b]:			0.09	0.16	0.20	0.37	0.65	0.75 1.0	1.5	2.0 2.6 Sediment	vven near	ן אוט (ppiii).	Φ
Date (MM/DD/YY)	Time (24 hr)	Method (pump, surge, bail)	Depth to Water (BTOC)	Volume Removed (gallens)	Pumping Rate	Te ('	emp °C)	Speci Conduc (mS/c	fic tivity m)	рН	DO (mg/L)	Turbidity (NTU)	Sediment (mt/L)		Comment	
5-30-19	1020	Bladder	14.27	P	300	14.	33	***************************************		Reserve State of the Constitution of the Const		>1000	,	Clean	ed floi	Jall
1	1025	1	14.27	1.5	300) i a	28	0,63	30	7.45	9.70	84.2	-51			
	1030		14,27		300						0.01	- 1/ -	11.	-		
	1035		14.27	4.5	300			-		7.36		34.2	-40			
	1040		14.27	6.0	300			0.63		7.31	8,70	13.1	-32 -26			
	1045		14.27	7.5	300			0.63		7.18	8,68	7.37	-26 -20			
	1050		14.27	9.0	300			0,63		7.13	8.70	6.52	-15		<u> </u>	
	1055		14.27	10.5	200	10	192	0.00	- (0.10	D V O V I	12			
							ر کسید		1 1	60						
					Samp	110	111	Ne.	++	0.0						-

Page 1 of _

	T																	Page 1 of
LOCATION		FTWHL				Loci	D: /	YW-	6					Date	:	5-29-	-19	
LOOKHON	Project Na	me: ARN	G PFAS	7		Proj	ect Num	ber: 60	059	52172	2			Reco	rded By:		Checke	d By:
<u></u>	Developm	ent Equipment:	Samp	olina					••••••									
EQUIPMENT		el Indicator Typ	e/ID#:	J			Wa	ter Quali	ity Me	ter Type:	Hor	iba	V-52		2			
	PID Type/I	D#: Ø.4	5					uipment l										
	Casing ID	(inches) [a]:	2		Ur	nit Casino	a Volum	e (gallon	/linea	foot) [b]:		•	Initial D	enth to	Water (F	T BTOC) [c]:	206	91
WELL INFO	Total Well	Depth (FT BTO	C) [d]: 3d	9				ckness (F								d-c] x b}:	20,0	***************************************
	Ground Co	ondition of Well:				***************************************			, .	-				(0	, , , , , , , , , , , , , , , , , , ,			
CASING	Casing ID	(inches) [a]:	74.24.24.24.24.24.24.24.2			1.5	2.0	2.2	3.0	4.0	4.3	5.0	6.0	7.0	8.0	Ambient PID) (maa):	
INFO	Unit Casin	g Volume (gal/li	inear foot) [b]:			0.09	0.16	0.20	0.37		0.75	1.0	1.5	2.0	2.6	Well Head P		Ф
Date (MM/DD/YY)	Time (24 hr)	Method (pump, surge, bail)	Depth to Water (BTOC)	Volume Removed (2) (gallens)	Pumping Rate m (Lpm)		mp C)	Speci Conduc (mS/c	tivity	pН	D((mg		Turbidity (NTU)	Sed	iment		Comment	
-29-19	12:40	Bladder	20.60									-	~-	L,		•		
	12:45		20.61	0.8	166		.41	101		7,20	6.3	32	0,25	18	63			1
	12:50		20,61	107			,80	1.13	3	7.16	60		Ø		38			
	12:55		20,63	2.5			,65	1,11		7.19		20	P		38			
	13:00		20.63	3,3			.06	1.09		7.03	5,0		\$		24			
	13:05		20.63	4.2			86	1.09		6.99	5.5		Ø Ø		18			
	13:10		20.63	5.0		12	,99	1,07	+	7.01	5.3	36	Ø.	19	19			
				Sa	mple	111	ne '	. 1:	3:1	5								
	0			Sar	20/18	ale	60 C	colle	ct	ed fo	P / B	a H	elle					
a .			,								•							
										10/50							***************************************	***
		asurements: eve																

Page 1 of __

LOCATION	Site:	FTW				LocID	:	MV	1-7					Date	5-	30-19		
LOOKHON		me: ARNO				Projec	t Num	ber: 60	055	2172				Reco	rded By:	CB	Checked	d By:
EQUIPMENT	Water Leve	ent Equipment: el Indicator Type D#: ϕ ϕ	Sampli e/ID#:	neg						er Type: †	tork)a (1-57					
							Eqi	uipment I	Decon:					******				
WELL		(inches) [a]:	2							foot) [b]:						T BTOC) [c]:	16040	5
INFO	Total Well	Depth (FT BTO ndition of Well:	C) [d]: 39.1		Wat	er Colum	nn Thio	ckness (F	FT) [d-	0]:			Well V	olume (g	jallon) {[d	d-c] x b}:		
			DICKU	1						1 1			T T			A 1: (D)		
CASING INFO		(inches) [a]: g Volume (gal/li	near foot) [b]:				2.0 0.16	2.2 0.20	3.0 0.37	4.0 0.65	4.3 0.75	5.0 1.0	6.0 1.5	7.0	8.0 2.6	Ambient PII Well Head F		Ф
Date (MM/DD/YY)	Time (24 hr)	Method (pump, surge, bail)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate M (Lpm)	Tem (°C	ıp	Speci Conduc (mS/c		рН	DC (mg/)	Turbidity (NTU)	Sed			Comment	
5-30-19	10:10	Bladder	16.50	φ	260	11.6	,8	0.84		7.44	8.9	57	40.0	2	38			
	10:20		16.50	2.6	260	11.6		0.81		7.38	8.1	8	37.4		34			
	10:30		16,45	5,2	260	11.5		0.84		7.38	7.0		28	23				
	10:35			7.8	260	11.9		0.84		7.37	7.9		32.6	23				
	10:40	.4-		10.4	260	11.6	60	0.84	6	7.37	7.8	,2	58.4	28	5			
					1			_ a	ine	1/-								
				-	Sampl	e 1	1 VY	e:	10,	45								

						1					-							
-									,						,			
	= .>																	
																		NO.
DEVELOPMENT C																		

																Page 1
LOCATION	Site: F	TWHH				Loc	D:	M W-9	3				Date:	5-8	29-19	
LOOKHON	Project Na	ime: ARNG	FFAS		************	Proj	ect Num	ber: 605	52172	7			Record	led By:	Checke	d By:
***************************************	Developm	ent Equipment:	Bladde	T												
EQUIPMENT		el Indicator Typ					Wa	ter Quality M	eter Type:	Hon	ba	V-52	?			
	PID Type/	D#: 	*****************				Equ	uipment Deco							2	
	Casing ID	(inches) [a]:	2		Uni	it Casin	g Volum	e (gallon/linea	ar foot) [b]:			Initial D	enth to W	later (F	T BTOC) [c]: 2ア, 2	6'
WELL INFO		Depth (FT BTC	9 1	2				ckness (FT) [c					olume (gal			•
	Ground Co	ondition of Well:	0.000.000.000.000.000.000.000.000												- ,	
CASING		(inches) [a]:			*******************	1.5	2.0	2.2 3.	0 4.0	4.3	5.0	6.0	7.0	8.0	Ambient PID (ppm):	
INFO	Unit Casin	ig Volume (gal/li	inear foot) [b]:			0.09	0.16	0.20 0.3	7 0.65	0.75	1.0	1.5	2.0	2.6	Well Head PID (ppm):	φ
Date (MM/DD/YY)	Time (24 hr)	Method (pump, surge, bail)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate ∧ (Lpm)		mp C)	Specific Conductivity (mS/cm)	рН	D((mg		Turbidity (NTU)	Sedim	ient by	Comment	<u> </u>
***************************************	5-29-19	Bladder	Share January	ϕ	110	17	.94	1.34	7.61	8.3	34	23,0	22			
14:20			27.25	0.8	160	-	46	1041	7,57	8.8	30	24,4	224			
14:25			27.24	106	160		17	1046	7.41	8.7		22.6	230			
14:30			27.24	2.4	160		94	1047	7.39			22.2		-		
14:35			27.24	3.2	160		81	1047	7.41			20,2	234			
14:40	,		27.24	4.0	160	12	73	1.47	7.45	8.6	9	21,8	230	0		
			2													
					a Mro	10:	TIM	10° 16	145							
					1					-		-			2	
				9	ample	5	alse	colle	cted	For	r B	atte	lle			
					1,											
	-															
						-										
						-										
						-										
***************************************					7.											
												700,000				

Page 1 of ____

7-60																		rayer
	Site:	rwHH				LocID:	A	DI3.	-Mi	V1						29-19		
LOCATION	Project Na	me: AR	NG PFA	9		Project	Num	ber:						Reco	rded By:	CB	Checked	Ву:
	Developme	ent Equipment:	Sampl	Tres			10/0	tor Ovali	h. Mot		tans	1	U-52	7				
EQUIPMENT		el Indicator Type D#:	e/ID#:					iter Quaii uipment [er rype. ı	10/7	5 W	0-52	-				***************************************
	PID Type/II		2		1 1-14	Casing V				foot) [b]:	<u> </u>		Initial C)ooth to	Motor (E	T BTOC) [c]:	42.87	71
WELL		(inches) [a]: Depth (FT BTO	C) [d]: 59			er Colum									•	d-c] x b}:		
INFO		ondition of Well:	o, [a]. 9 9		1.1.4.			(·/ L		***********							
CASING	Casing ID	(inches) [a]:					2.0	2.2	3.0	4.0	4.3	5.0	6.0	7.0	8.0	Ambient F		
INFO	Unit Casin	g Volume (gal/li	near foot) [b]:			0.09	0.16	0.20	0.37	0.65	0.75	1.0	1.5	2.0	2.6	Well Head	I PID (ppm):	P
Date (MM/DD/YY)	Time (24 hr)	Method (pump, surge, bail)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate //\(Lpm)	Tem _(°C)	0	Speci Conduc (mS/c	tivity	рН	D((mg		Turbidity (NTU)	Sed	iment-		Comment	
5-29-19	9:45	Bladder	43.30	ø	100	14.2		1.8		7.54		83	15.8	-8				3 "
	9:55		44.20	0.5	90	13.8		1.8		7.53	-	83	16.4		5			
	10:00		44,39	0.95	90	13,		1,97		7.48	13.	74	17.4		7 7			
	10:05		44.70	1.40	90	13.2		1.91		7.47	13.		17.4		8			
\rightarrow	10:15		45,45		90	12.9		1.94		7.47		.89	1600		17		to the second se	
				W.														
					2 44 12	100	771	10.0	ø	0,2								
				,	Jamp	16	1 1	ME	P	0020								

																		- Warranger
							-						*		-		×	
		leasurements: ev																

-			-		-	
	-			I_{1}	V.	
		•	V	/ 1	7 8	

Disem	- prop		
1	11	4500	0
1 4	-		V

Sampled

Page of

		Site: F+WHH Project Name: ARNG PRAS						MW-10)		Date: 5/29/19			
LOCAT	ION							mber: 605	5-2172		Recorded By:	ded By: Checked By:		
Date (MM/DD	e /YY)	Time (24 hr)	Method (pump, surge, bail)		Volume Removed (gallons)	Pumping Rate (Lpm)	Temp (°C)	Specific Conductivity (mS/cm)	рН	DO (mg/L)	Turbidity (NTU)	Sediment (mL/L)	Comment	
5/29/	14	3515	LF. blad	29.88	41	0.3	12.97	412231.04	7.53	11.73	0.46	/33		
		1520		24.88	41	0.3	12.10	1.05	251	12.00	1.3	130		
		1525		31.10	1.0	0.3	12.13	1.05	7.50	11.96	0.23	133		
		1530		31.10	1.5	0.3	12.15	1.05	7.50	12.11	1.07	147		
-		1535		31.10	2.0	0.3	11.96	1.05	7.48		0.28	157		
		15 40	V	31.10	2.5	0.3	11.85	1.06	7.50	12.20		162		
		1545		31.60	3.0	0.7	11.81	1.06	7.51	12.01	0.13	167		
1	/						2							
			√											
						1	,_	11.						
			1	IME	SAM	nled	15	45						
			l l	11.00	00,									

					d p									
													7	
												-		
				<u>_</u>	1	<u></u>	1	11 11 2 2 2 2			mayad and na	ramatars are within	n the following criteria for 3 consecutive	

AECOM

Monitoring Well Development Form

Sampled

Page 1 of ____

LOCATIO	Site:	Site: FTWHH							LocID: MWII						Date: 5-30-19					
LUCATIO	Project							Project Number: 60 552 172						Recorded By: C Checked By:						
	Develo	Development Equipment: Bladder Fump																		
EQUIPMEN	IT Water I	Water Level Indicator Type/ID#:								Water Quality Meter Type: Horiba U-5Z										
	PID Ty	PID Type/ID#: 🗘 🖈							Equipment Decon:											
	Casing	Casing ID (inches) [a]: Z Unit 0							t Casing Volume (gallon/linear foot) [b]: Initial D						epth to Water (FT BTOC) [c]: 27.9					
WELL INFO		1 / 2 - 2													olume (gallon) {[d-c] x b}:					
	Ground	Ground Condition of Well:																		
CASING			nches) [a]:		,,,,,,,,		1.5	2.0	2.2	3.0	4.0	4.3	5.0	6.0	7.0	8.0	Ambient PID (ppm):	mi		
INFO	Unit C	asing	Volume (gal/li	near foot) [b]:			0.09	0.16	0.20	0.37	0.65	0.75	1.0	1.5	2.0	2.6	Well Head PID (ppm):	\mathcal{Q}		
Date (MM/DD/Y		Time (24 hr) Method (pump, surge, bail)		Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate (Lpm)	Temp (°C)		Speci Conduc (mS/c	ific etivity pH em)		DO (mg/L)		Turbidity (NTU)	Sediment (mL/L)		Comment			
5/30/10	830	L	F. bled.	27.93		0.250	11.2	39	1.5	2	6.99	10.		3/		92				
	835		1	27,91	2.25		-		1.5		7.24			11.3	27	-				
	840			27.91	3.5	0.520	Hel		1.5		7.28	10-		9.42	_	76				
	845	_		27.91	4.75				1.5		7.29			7.21	_	74				
	850			27.91	5	0.250	11.19		1.5	53 /		9.89 4.		4.75	271					
															-					
		Samp		MOO	ple Dir		10 0		155											
				W/W	0	14		00	2)											
1																10				
V																				
								-								-	_			
					-															
	×																			

Monitoring Well Development Form Sampling

Page 1 of ____

LOCATION	Site:	-TWHH					LocID:	C	BTI	MW.	-01				Date	: 5-	-30-10	7	
LOCATION	Project Na	me: ARN	G PFAS	,			Project	t Num	ber: 6	059	52172				Reco	orded By:	-30-10 CB	Checked By:	
		ent Equipment:																	
EQUIPMENT	Water Lev	el Indicator Typ	e/ID#:	3				Wa	iter Qual	ity Met	er Type: ∤	100/	ba	V-52					
	PID Type/	ID#: Φ,Φ							uipment										
	Casing ID	(inches) [a]:	2	**********		Unit	Casing \	/olum	e (gallor	/linear	foot) [b]:			Initial F	enth to	Water (F	T BTOC) [c]	27,97	
WELL INFO	Total Well	Depth (FT BTC		7			er Colum									gallon) {[c			
1111 0	Ground Co	ondition of Well:	Grass												•				
CASING	Casing ID	(inches) [a]:					1.5	2.0	2.2	3.0	4.0	4.3	5.0	6.0	7.0	8.0	Ambient F	PID (ppm):	
INFO	Unit Casir	ng Volume (gal/l	inear foot) [b]:			(0.09	0.16	0.20	0.37	0.65	0.75	1.0	1.5	2.0	2.6		I PID (ppm): 🧳	
Date (MM/DD/YY)	Time (24 hr)	Method (pump, surge, bail)	Depth to Water (BTOC)	Volume Removed (gallons)	Pump Rat r _Y (Lpr	te	Tem _l (°C)	р	Spec Conduc (mS/c	ific tivity	рН	D((mg		Turbidity (NTU)	_Sec	er liment		Comment	
5-30-19	8:10	Bladder	28,15	\$	30		10.7	72	0,8		6.94	11.4	18	129		75		5	
	8:20		28.20	3			10.5		0.8		7.22	10.0		71.8		55			
	8:30		11	6			10.4		0.83		7.33	10.	-	61.9		62			
	8:40		11	9			10.5		0.83		7.40	10:	38	27.1	21	Sl	W. Control of the Con		
	8:45		28.21	10.5			10.5		0.8		7.39	10.		13,9	-	62			
	8:50	+	14	12		•	10.5	5	0.8	31	7.39	10:	29	11.7	2	61			
															-				
					50	AM C	Dle	7	100	®	8:50	_	-						
)"	Core	DIE	1 4	prie	ês.	0000	7							
															1				
								,									***************************************		
																		22	
																			,
					-														
					-														
					-														-
					-						***************************************						***		
			L	L	1							1							

DEVELOPMENT CRITERIA: Measurements: every 5 minutes; Development is considered complete if water added during boring and well construction is removed and parameters are within the following criteria for 3 consecutive readings: ± 1°C, ± 5% Conductivity; ± 0.1 pH; Turbidity ± 10 NTU for 30 minutes or < 50 NTU and sediment <0.75 mL/L

	2	7	10	1
/ A		4		, Y , .
V. 60				

Page	1	of	

LOCATION	Site:	TWHA		1	W U= K +	LocID: B	H-02			1			0/20		
LOCATION	Project Na	me: FT W	HH SS	1		Project Number: 60552172 Re							BR_	Checked By:	
	Sampling I	Equipment - Pur	np: Eleoti	EC H				Co	ontroller: 6	EDCONTR	ما <i>ت</i>	Compressor: Geocoutreal			
EQUIPMENT	Water Level Indicator Type/ID#: (1807) Water Quality Meter Type: House Sonde ID: 44 529										Τ.	H	andset ID: 19350		
	PID Type/ID#: Equipment Decon:												~~~~	***************************************	
	Description	n: FINCHM	- דאטמו		Screen Inter	val (BTOC): \	NKNOWN	Initial De	pth to Wate	r (BTOC): 2	7.5	2	Ambient P	ID (ppm):	
WELL & SAMPLING	Description: FLUCHMOUNT Screen Interval (BTOC): UNYMOUNI Initial Depth to Water (BTOC): 27.52* Historic Pump Settings: Pump Inlet Depth (BTOC): 31* Condition of Well/Comments: Height of stick-up (ft): FLUSH										=,0	Well Head	I PID (ppm):		
INFO												(II)			
	NOTE: T	TB: 34	.29	WC: 6		i				LEGATIV	Æ				
	KEP	ACED	DO W	EMBR	ANE -	- NOT	READIN	16 C	DRREZ	T4.		000000000	***********		
Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate N (£pm)	Temp (°C)	Specific Conductivity (mS/cm)	DO (mg/L)	рН	ORP (mV)	Turbidity (NTU)		Refill/ narge ands)	Pump Pressure (PSI)	Comment	
	1330	27.55	1	200	16.53	0.972	26.64	7.52	161	228	301		22		
	1335	27.55	2		17.57	0.984	37.52	7.61	155	141	1 .	7.7			
	1340	27.55	3		17.36	0.977	34.34	7.58	122	81.7					
	1345	27.55	4		17.35	0.975		7.68	155	33.2	-	-		REPLACED DO	
	1350		5	in, e enter	17.32	0.977		7.61	183	28.3	-	===		MEMBRANE	
	1400		6		18.61	1.20	4.67	7.59	79	31.6	5 5				
90000 000	1405		7		18.14	1.07	4.30	7.63	100	16.2	-	-			
	1410		8		17.50	_	1 00	7.63	117	13.3		1			
	1415	27.55			17.18	6.986		7.63	-	14.1		1-			
	1420	27.55	10		17.07	0.978	4.28	7.62	130	13.0		-	1		
												1			

Sample ID Numbers and Sample Time	Container Count, Volume & Type	Preservative	Parameter(s)
BH-02-101020		PEAS NOME	PEAS.
The Control Avenue A	25604	and the second	PSC 600 LLC
	enia ara-control care	2.650 (25%)	

134		4 4
9 A		AA
<i>0</i> / ^	Section 4	

D	4	-2	-
Page	1	OT	

LOCATION	Site: F	HHW				LocID: F	H-02			h	Date		In1:		
LOCATION		me: FT v		is 1		Project Numi	oer: 60557	2172		***********	Reco	orded By	B	R	Checked By:
	Sampling I	Equipment - Pur	np: 61507	rech				C	ontroller: 67	EDCONTI	201	(Compres	ssor: ¿	BOCONTROL
EQUIPMENT		el Indicator Type			2	Wat	er Quality Meter							Han	dset ID: 19350
	PID Type/I					Equ	ipment Decon:				******	54545555	******	~~~~~	
	Descriptio	Description: STICKUP Screen Interval (BTOC): UNKNOWN Initial Depth to Water (BTOC): 34.43											Ambie	ent PID	(ppm):
WELL & SAMPLING	Historic Pump Settings: Pump Inlet Depth (BTOC): 51'									10 20	Well I-	lead Pl	D (ppm):		
INFO	Condition of Well/Comments: Good Height of stick-up (ft): ~\.(o)														
		TB: 5			21.52			2007			1	= = .			
	SHA	KE TES	ST NEE	ATTIVE	jakara a	la esta consta		1	1	14				V CARDADA CA	71 7 3.3.2.2.2.
Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed	Pumping Rate (Lpm)	Temp (°C)	Specific Conductivity (mS/cm)	DO (mg/L)	pН	ORP (mV)	Turbidity (NTU)	Disc	p Refill/ charge conds)	Pur Press (PS	sure	Comment
- 2	1305	34.43		0.2	12.07	1.61	9.08	7.34	142	272	10	25	34	+	
	1310	34.43	2	4	11.95	1.65	9.10	7.33	143	241		1	1		
	1315	34.43	3		11.85	1.66	10.78	7.34	144	217	- =		-		
-1-	1320	34.43			12.07	1.67	10.62	7.35	145	171	in 19				#G 001 F189400
	1325	34.43	ち		12.01	1.65	10.23	7.37	146	127					
-	1330	34.43	4		12.18	1.65	10.41	7.37	146	102					
	1335	34.43	1		1230	1.65	10.64		147	97.2					
147	1340	34.43	8		12.14	1,67	9.96	7.36	142	87.5	1	- (b ₁ =			
	1345	34.43	9		1229	1,67	10.54	7.32	134	80.6					
			1	1		V CARACTER CENTRAL			E 142 E1						

Sample ID Numbers and Sample Tim	e	Container Count, Volume & Type	Preservative	Parameter(s)
FH-02-101120	1345	2 125 ML HDPE	NOME	PFAS
- 10 Maria				With the second
	w Sales	4 7 2 2		See the second of the second o
with the second			a (4-) a = 1 = 1"	2270000
for the same	181	A STATE OF THE STA	Marie Barto	

	100	AZ
1		TA

Page	1	nf	

LOCATION	Site: F-	- WHH		4-1		LocID:	80-W		500		Date: 10	11/20			
LOCATION			JHH SS	51		Project Nu	mber: 60552	472		39/00/00/00/00/00/00/00/00/00/00/00/00/00	Recorded B	y: BR	Checked By:		
	Sampling E	quipment - Pu	mp: GEOT	ECH				Co	ontroller: E	IED CONT	ROL	Compressor: GEOCONTROL			
EQUIPMENT	Water Leve	el Indicator Typ	e/ID#: GED	TECH		N	Vater Quality Mete	т Туре:	DEIBA S	Sonde ID:	44529	Har	ndset ID: 19350		
	PID Type/ID#: Equipment Decon:														
	Description: STICKUP Screen Interval (\$100): 39.2-59.2 Initial Depth to Water (BTOC): 28.96 Historic Pump Settings: Pump Inlet Depth (BTOC): 50'										Ambient PID	(ppm):			
WELL & SAMPLING											Well Head F	ID (ppm):			
INFO	Condition of Well/Comments: 6000 Height of stick-up (ft): ~ 1.3														
		TB: 59		wc: 3									== 40 0 0 0		
**************	SHI	XKE TI	est No	EGIATTV	E.			100000000000000000000000000000000000000	~~~~~~~~~	************					
Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed L_ (gallens)	Pumping Rate (Lpm)	Temp (°C)	Specific Conductivit (mS/cm)	ty DO (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Pump Refill/ Discharge (seconds)	Pump Pressure (PSI)	Comment		
	1505	28.96		0.2	1103	1.54	10.07	7.44	108	103	10/25	34	- 1		
7 7 7	1510	28.96	2	- 1	10.81	1,55	10.33	7.42	120	110		- 4			
	1515	28.96	3		10.78	1.50	10.28	7,38	132	107	1 1	1			
	1520	28.96	4	-	10.59	1.57	10.58			109					
	1525	28.96	5	jarda da a	10.78	1.57	10.41	7.34		82.3	1 11-12-1	-	According to the contract of t		
	1530	28.96	6		10.72		10.95	7.33		74.5		- 1			
	1635	28.96	7		10.87		10.27	7.31		57.0	- 11 -				
	1540	A CESTALISM AND THE	8		10.89	1.58				51.5					
	1545	28.96	9		10.99	1.58	10,80	7.29	154	49.1					
				1											
B	4 O El / N	Electronic de la	0 5 1 4	- O4 - L III 41		41 2 11 1				· 00/ O-	1 0 1 4 40	W DO + 0.4 -11	+ 10mV ORP: 10% Turb		

Pumping Rate: < 0.5L/min; Measurements: every 3 - 5 minutes; Stabilization is defined as the following for three consecutive readings: ± 3% Temp, ± 3% Conductivity; + 10% DO; ± 0.1 pH; ± 10mV ORP; 10% Turb

Sample ID Numbers and Sample Time	Container Count, Volume & Type	Preservative	Parameter(s)
MW-08-101120 1545	2 125 ML HOPE	NONE	PFAS
New York of Tables 1 Street			
the property of the property o		Tig the state of	
		San The mother for the	
Table 1 Section 1			
N. 600			
	DENT STATE PRINCIPLE	STATE FOR THE	

LOCATION	Site:	- WHI	H	G	0	LociD: M	W-11	. 75	399	1	Date: 10		
LOCATION	Project Nar	ne: FT W	HH 551		17	Project Number: 60552172					Recorded By	BR	Checked By:
	Sampling E	quipment - Pu	mp: GEOTI	ECH B	LADDER	- PONE	>	Co	ontroller:	TEO CON	TROL (Compressor:	GEOLOWTROL
EQUIPMENT	Water Leve	l Indicator Type	e/ID#: GEO	TEGH			ter Quality Mete					Han	idset ID: 19350
	PID Type/II					Equ	ipment Decon:		*************	**************	····	Managananananananananananananananananana	201010000000000000000000000000000000000
	Description	1: STICK	JP		Screen Inter	val (BTOC): L)NKNOWN	Initial De	pth to Wate	er (BTOC):	9.30	Ambient PID	(ppm):
WELL & SAMPLING		mp Settings:				-	1		let Depth (B			Well Head P	ID (ppm):
INFO	Condition o	f Well/Comme	nts: Good		4			Height	of stick-up	(ft): ~2.			
	NOTE: T	D: 57.2	2'-1	wc: 2	7.92'			= 5			1		
	SHAK	E TES	T NEG	ATIVE				************			****************		000000000000000000000000000000000000000
Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed L_ (gallons)	Pumping Rate (Lpm)	Temp (°C)	Specific Conductivity (mS/cm)	DO (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Pump Refill/ Discharge (seconds)	Pump Pressure (PSI)	Comment
10/9/20	29-3	29.3	1-1	200	17.10	1.10	3.87	7.0B	100	250	20	30	
	1405	29.3	2	200	15.30	1,07	2.33	7.41	los	277	1		
	1410	29.3	3	200	14.74	1.07	3.02	7.44	110	164			
7 7	1415	29.3	4	200	14.72	1.06	4.15	7.51	113	118			
	1420	29.3	ຽ	200	14.73	1.06	4.06	7.53		111			
	1425	29.3	6	200	14.39	1.00	3.75	7.54		81.9		-	- v 5x -
Ka ke	1430	29.3	7	200	14.13	1.06	4.46	7.57		68.0	7		
	1435	29.3	В	200	13.95	1.07	4.04	7.62	11000	64.9			
	1440	29.3	9	200	14.00	1,06	4.04	7.63		56.4	- /	1	
	1445	29.3	10	200	1392	1.00	4.81	7.61	125	55.4			A 340 - W. H. W. W.
				9.5						201.5	1 4 5 4 5	100.04.	+ 10mV ORP; 10% Turb

Sample ID Numbers and Sample Time	Container Count, Volume & Type	Preservative	Parameter(s)
	2 125 ML HDPE	MONE	PFAS
MW-11-100920 1445		The states of	
16g T 43g T	treater was		建进程的 计自由表示 一
And a second of the second of	201 102	To gree [a shifter 1]	College of the Colleg
to a control of the c	A. 150 100 00 00 00 00 00 00 00 00 00 00 00 0		
र दुर्भीका कि जा का अस्ति । अस अस्ति । अस्ति			
		and the grant and di	
	O LEO MARI DOMENTA POLICA	and the same	124

		V
/ A		

Dogo	4	٠.	
Page.	1	OT	

LOCATION	Site: FT	W##		ы,		LocID: A	11-KI	77	-		Date: [0]	11 20			
LOCATION	Project Nar	me: FT W	28 4HI	١ 45		Project Number: 60552172 Recorded					Recorded B	FRL	Checked By:		
	Sampling E	quipment - Pu	mp: GEOTT	ECH				Co	ntroller:G	20 CONTR	۵۲ ا	Compressor: GEOCONTROL			
EQUIPMENT			e/ID#: Geor			Wa	iter Quality Met					Handset ID: 19 550			
	PID Type/II	D#:		*************		Eq	uipment Decon:		00000000000000	000000000000000000000000000000000000000		0000000000000000000000000000000000000	po (00 00 00 00 00 00 00 00 00 00 00 00 00		
	Description	n: Sticki	٦٩		Screen Inter	rval (BTOC) :	45-55	Initial De	pth to Wate	r (BTOC):	34.72	Ambient PID	(ppm):		
WELL & SAMPLING		mp Settings:				Pump Inlet Depth (BTOC): 53 Well Head PID (ppm):					D (ppm):				
INFO	Condition of Well/Comments: Good Height of stick-up (f														
	NOTE: D	TB: 58	,25	WC: 2	3.53	.=-									
10500010101010101010	5	HAKE	TEST	NELAT	IVE	****************		000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0.0000000000000000000000000000000000000			
Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed L. (gallons)	Pumping Rate (Lpm)	Temp (°C)	Specific Conductivity (mS/cm)	DO (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Pump Refill/ Discharge (seconds)	Pump Pressure (PSI)	Comment		
	1110	34.B	0.5	0.1	10.82	0.540	7.43	7.31	169	228	5/40	30			
	1115	34.8	: T =	1	10.84	0.539	7.13	7.35	166	212					
	1120	34.8	1.5	4 - u= 1	10.27	0.551	7.02	_	162	174					
177 2	1125	34.B	2	1	10.60			7.47	122	129	-				
	1130	34.8	2.5		10.55	0,54	17.67	7,55	149	104					
	1135	34.8	3		10.56		7.19	7.56		93.5	real real				
	1140	34.8	3,5		10.45			7.61	142	81.6	•				
	1145	34.8	4	į.			7.79	7.60	141	78.0					
5	1150	34.8	4.5		10.42	0.578	7.74	7.60	140	74.8					
							1		- 0 X - 1						

Pumping Rate: <0.5L/min; Measurements: every 3 - 5 minutes; Stabilization is defined as the following for three consecutive readings: ±3% Temp, ±3% Conductivity; +10% DO; ±0.1 pH; ±10mV ORP; 10% Turb

Sample ID Numbers and Sample Time	Container Count, Volume & Type	Preservative	Parameter(s)
A011-MW1-GW 1150	2 125 ML HDPE	NONE	PFAS
	(mass)	My Special	
	AN-17 A-2-	il in the same	· · · · · · · · · · · · · · · · · · ·
F. CHUCK 1			
A 2 NO SERVICE AND A SERVICE A		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
	studial de la despera	540/11/00/0	lace lace

- 1112	٠.		
Page	4	οf	
raue	- 1	OT	

LOCATION	Site:	WHH				LocID: Ao	11-MW2			-			2/20	ne Correct -	
LOCATION		ne: FT W	HH SSI			Project Number: 60552172					Recorded By: Checked By:				
	Sampling E	quipment - Pur	np: GEDT	ECH		Controller: GEDCONTROL					_ 0	Compressor: GEOCONTROL			
EQUIPMENT	Water Leve	l Indicator Type	ID#: GIEOT	TECH		Wat	er Quality Mete	r Type: {\ €	RIBAS	onde ID: 4	452	9	Handset ID: 19350		
*******************	PID Type/II)#:		VASCANGE V	010/010/010/010/0	Equ	ipment Decon:	100000000000000000000000000000000000000	0000000000000000	500000000000000000	00000000	000000000	****************		
	Description	: Stick	9		Screen Inte	rval (BTOC) .	30-40	Initial De	pth to Water	r (BTOC): 3	33.7	1	Ambient PID	(ppm):	
WELL & SAMPLING		mp Settings:	-		-	Pump Inlet Depth (BTOC): 38.5 Well Head PID (ppm):					ID (ppm):				
INFO		f Well/Commer					Height of stick-up (ft): ~3 '							*** 0810	
	_	TB: 43.4		wc:		SLO	W KECH	WRE GE	- WET	u.					
	AHC	KE TE	5T NE	-GATI	-	300000000000000000000000000000000000000	***	******	9898989898989898	******	XXXXXXXXXXX	00 <i>0</i> 000000000000000000000000000000000	ATATATATATATATATA	9437631 0 1694376376376376376376376376376	
Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed L_ (gallons)	Pumping Rate (Lpm)	Temp (°C)	Specific Conductivity (mS/cm)	DO (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Disc	Refill/ harge onds)	Pump Pressure (PSI)	Comment	
I HIZ	1015	33.80	0.25	0.05	12.43	0.831	6.82	7.19	188	43.7	5	40	30		
	1020	34.08	0.5	4	12.07	0.831	7.24	7.28	183	43.4		—	1		
- 11180 700 1401	1025	34.12	0.75	- 10 -	11.57	0.825	7.12	7.33	182	39.3			;- p		
	1030	34.16	1			0.824	7.35	7,38	180	39.2				1 FF 9-1	
-	1035	34.19	1.25		10.64		7.08	7.40	178	36.5				N TO THE RESERVE OF THE PARTY O	
	1040	34.22	1.5		10.63		+	7.41	176	28.9	1 - II				
-	1045	34.24	1.75		10.66		7.03	7.42	174	23.1				### 10 M	
-	1020	34.25	2		10.67	B .833	7.42	7.43	173	18.6	0 V .				
	1055	34.27	2.25		10.67	0.832	7.04	7.44	173	18.1					
	1100	34.27	2.5		10.61	0.835	7.09	7.44	173	16.8		,			
			L	V								V	<u> </u>		

Pumping Rate: < 0.5L/min; Measurements: every 3 - 5 minutes; Stabilization is defined as the following for three consecutive readings: ± 3% Temp, ± 3% Conductivity; + 10% DO; ± 0.1 pH; ± 10mV ORP; 10% Turb

Sample ID Numbers and Sample Time	Container Count, Volume & Type	Preservative	Parameter(s)
A011-MW2-GW 1100	Z 125 ML HOPE	HONE	PFAS
71012 11102 0100			
- Value Value Value III and II			
			ALC L. LACT.
We approve a proper a figure		I de la	Manager and the second
MOUNTS TO THE STATE OF THE STAT		111 = 41	
			E W
	Market to our service of the control	track flower	

LOCATION

EQUIPMENT

WELL &

SAMPLING

INFO

Management of the purpose the property of	onitoring we	eli Sampie C	ollecti	on Lor	m			Page 1 of
Site: FT WHH	LocID:	4012- MW	3	=======================================	-	Date: 101	10/20	
Project Name: FT WHH SS1		t Number: 6055				Recorded By	BL	Checked By:
Sampling Equipment - Pump: George					DOONTRE		Compressor:	GEOCONTROL
Water Level Indicator Type/ID#: George		Water Quality Mete	er Type: 32	HORIBAS	onde ID: 🔟	4529	Ha	ndset ID: 19350
PID Type/ID#:		Equipment Decon:	11.11.11.11.11.11.11.11.11.11.11.11.11.	010100000000000	anananananananana	000000000000000000000000000000000000000	**************	
Description: FLUS H MOUNT	Screen Interval (BT	oc): 40-50°	Initial Dep	th to Water	(BTOC): 3	2.04	Ambient PII) (ppm):
Historic Pump Settings:			Pump Inle	t Depth (B	roc): 45		Well Head F	PID (ppm):
Condition of Well/Comments: Good		= 0 0 0 0	Height o	f stick-up	(ft): FLU	SH		1
NOTE: DTB: 49.85" WC: 17	.81'	To the Benney IV.			Language and the same of the s			
SHAKE TEST NEGATIVE.	1			22722422222				***************************************
Time Depth to Volume Pumping	Temp Spec	cific DO		ORP	Turbidity	Pump Refill/	Pump	

Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed (gallone)	Pumping Rate (Lpm)	Temp (°C)	Specific Conductivity (mS/cm)	DO (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Disc	Refill/ harge onds)	Pump Pressure (PSI)	Comment
	1520	32.65		0.2	17.68	1.23	4.76	7.81	152	670	20	10	28	
	1525	32.05	2		14.92	1.29	5.37	7.61	155	357				
W 124	1530	32.05	3		14.23	1.31	5.17	7.59	154	230		-		
- 1	1535		4	*119 DT = -	13.85	1.31	5.13	7.58	154	197		17		
	1540	32.05	5	, - y - ·	13.71	1.31	5.15	7.57	155	154				
	1545	32.05	6		13.60	1.31	5.22	7.58	155	102				
70. 60.00	1550	32.05	7		13.56	1.32	5.20	7.57	155	79.2			-	
+ + + + + + + + + + + + + + + + + + + +	1555	32.05	8		13.62	1,32	5.25	7.57	155	57.8	1			
	1600	32.05	9		13.56	1.32	5.20	7.57	155	49.0	1	- MA	end of	
	1605	32.05	10	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	13.60		5.18	7.56	156	44.8		/	V	- 4)
	1610	32.05	11		13.54	1.32	5.15	7.90	15%	40.5		1	. 0	

Pumping Rate: <0.5L/min; Measurements: every 3 - 5 minutes; Stabilization is defined as the following for three consecutive readings: ±3% Temp, ±3% Conductivity; +10% DO; ±0.1 pH; ±10mV ORP; 10% Turb

Sample ID Numbers and Sample Time	Container Count, Volume & Type	Preservative	Parameter(s)
A011-MW3-GW 1610	2 125 ML HDPE	NONE	PFAS
A011-MW3-GW-DUP 1610	2 125 ML HDPE	NONE	PFAS
	2 125ML HOPE	NONE	7FAS
	Z 125ML HOPE	NOME	YFAS
A011-MW3-GW-MSD 1610	Service and the service and th		1 2 April 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
The state of the s		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
W. Karana	i judinasa sa kabasa za sa s	PELLENS.	

LOCATION) H H SS)			1	LocID: Ac	101-M	W4			Date:		14/20	
010000000000000000000000000000000000000	Project Na	me: ARNO	= PFAS			Project Numb	er: 6055	2172	-		Reco	rded By	714	Checked By:
	Sampling E	quipment - Pur	np: Geofech	Bladder	pump			Co	ntroller: C-	eoContro	180	0	Compresso	r. Geocontrol pro
EQUIPMENT		el Indicator Type				4678 Wate	er Quality Mete	r Type: ひ	-52 S	onde ID: 25	314		5.31/	Handset ID: 18454
	PID Type/II	D#: N/A	1		!	Equi	pment Decon:	Ligoino	×	104 04 04 04 04 04 04 04		500 200 00 00 00 00 00 00 00 00 00 00 00	~~~~	
	Description	n: Flush	income f		Screen Inter	val (BTOC): 1	18-32	Initial De	oth to Wate	r (BTOC): 2	9.39	,	Ambient	PID (ppm): N/A
WELL & SAMPLING		mp Settings:		W						TOC): 34				d PID (ppm): ルル
INFO		of Well/Commer			1065 dit	ch		Height o	of stick-up	(ft): 0.5	OF	+ 100	S	
	LIOTE	TD=38						70				_)	
		70=38	.OZ ++ 1	Droc.					1 100					
Date	Time	Depth to	_Volume	Pumping	Temp	Specific	DO		ORP	Turbidity		Refill/	Pump	
(MIW/DD/YY)	(24 hr)	Water (BTOC)	Removed (gallons)	Rate (Lpm)	(°C)	Conductivity (mS/cm)	(mg/L)	pН	(mV)	(NTU)		harge onds)	Pressur (PSI)	e Comment
10/14/21	0853	29,45		60	10.75	0.938	5.03	4.69	129	302	20/	10	22	Pumpon@ 0847
	6858			260	10.82	0.938	3,50	6.15	32	234	15/	118	38	
-	0903		0.5		10.92	0.931	3,77	6.35	28	128	- 1	r .	1-1-	- L 120 - 2-0
	0908				10.91	0.921	3,99	6.47	39	54.8				
	0913				10.89	0.914	4.49	6.58	54	20.9		-		
	19918		1.5		10.91	0.914	4.21	6.62	58	16,7				
								1	100	00			The second second	
	0913				10.88	0911134		6.67	69	8.9				
	0929		2.5		10.88	0.912	4.60	6.72	71	9.1				
	0929		2.5		10.98			-			J		1	
	0929		1 10 10 10	- SAN	10.88	0.912	4.60	6.72	71	9.1	3		1	
	0935		-3		10.98 10.972 1PLED	0.912	4.60 4.25	6.72 6.71	71 75	9.1				pH; <u>+</u> 10mV ORP; 10% Turb

Sample ID Numbers and Sample Time

Container Count, Volume & Type

Preservative

Parameter(s)

2 x [25mL HDFE None

PFAS

AOI 91-MWO4-GW

C 0935

Shake test ©

LOCATION	Site:	HHW	-				101-ML						120	Oh a should Plan	
LOCATION		ne: FT W	HH SSI			Project Number: 60552172					Recorded By: 73/2 Checked By:				
********	Sampling E	quipment - Pun	p: George	-CH		Controller: Geoca									
EQUIPMENT		I Indicator Type				Water Quality Meter Type: HORIBA Sonde ID: 44529					4529		Handset ID: 19350		
	PID Type/II	D#:			1	Equipment Decon:				*****	090009000	*****	0.000		
****	Description	n: FLUSHI	40L16EE		Screen Inter	val (BTOC) : 3	5-45	Initial De	epth to Water	(BTOC): 3	3.92	A	mbient Pl	D (ppm):	
WELL &			NONE			Pump Inlet Depth (BTOC): 40						\ v	Vell Head	PID (ppm):	
SAMPLING INFO		of Well/Commen						Height	of stick-up	ft): FLU	SH	il.			
		TB: 44.5	1000	WC: 11.	06	SLOW	DECHE	RHE	200		-				
	11	HAKE		NEG	TIVE.										
Date (MM/DD/YY)	Time	Depth to Water	Volume Removed	Pumping Rate	Temp	Specific Conductivity	DO	pН	ORP (mV)	Turbidity (NTU)	Pump Ro Dischar		Pump Pressure	Comment	
	(24 hr)	(PTOC)	(equilien)		(°C)		(mg/L)		(mv)	(NIO)	(second		(PSI)		
(MM/DD/YY)		(BTOC)	(gallons)	(Lpm)		(mS/cm)	5.29	7.63	-23	229		ds)	(PSI) 28		
(MM/DD/YY)	1255	(BTOC) 34.30	0.25		12.44	(mS/cm)					(second	ds)			
(MM/DD/YY)	1255	(BTOC) 34.30 34.31	(gallons)	(Lpm)		(mS/cm) 1.13	5.29	7.63	-23 -57	229	(second	ds)			
(MM/DD/YY)	1255 13:00 1305	(BTOC) 34.30 34.31 34.34	0.25 0.5	(Lpm)	12.44	(mS/cm) 1.13 1.19	5.29 4.29	7.63 7.57	-23 -57 -65	229 274 254 220	(second	ds)			
(MM/DD/YY)	1255 13:00 1305 1310	(BTOC) 34.30 34.31 34.34 34.34	0.25 0.5 0.75	(Lpm)	12.44 12.75 13.10	(mS/cm) 1.13 1.19	5.29 4.29 3.92	7.63 7.57 7.55	-23 -57 -65 -68 -72	229 274 254	(second	ds)			
(MM/DD/YY)	1255 13.00 1305 1310 1315	(BTOC) 34.30 34.31 34.34 34.36 34.36	0.25 0.5	(Lpm)	12.44 12.75 13.10 13.39	(mS/cm) 1.13 1.19 1.21	5.29 4.29 3.92 3.67	7.63 7.57 7.65 7.54	-23 -57 -65 -68 -72	229 274 254 220	(second	ds)			
(MM/DD/YY)	1255 13:00 1305 1310 1315 1320	(BTOC) 34.30 34.31 34.34 34.36 34.36 34.38	0.25 0.5 0.75 0.75	(Lpm)	12.44 12.75 13.10 13.39 13.62	(mS/cm) 1.13 1.19 1.21 1.21	5.29 4.29 3.92 3.67 3.48	7.63 7.57 7.55 7.54 7.54	-23 -57 -65 -68 -72 -72	229 274 254 220 198	(second	ds)			
(MM/DD/YY)	1255 13:00 1305 1310 1315 1320 1325 1330	(BTOC) 34.30 34.31 34.34 34.36 34.36 34.38 34.38	0.25 0.5 0.75 0.75 1 1.25 1.5	(Lpm)	12.44 12.75 13.10 13.39 13.62 13.79 14.02 14.03	(mS/cm) 1.13 1.19 1.21 1.21 1.21 1.21 1.21	5.29 4.29 3.92 3.67 3.48 3.63 3.58 3.51	7.63 7.57 7.55 7.54 7.54	-23 -57 -65 -68 -72 -72 -72	229 274 254 220 198 178 141 129	(second	ds)			
(MM/DD/YY)	1255 13:00 1305 1310 1315 1320 1325 1330	(BTOC) 34.30 34.31 34.34 34.36 34.36 34.38 34.38	0.25 0.5 0.75 0.75 1 1.25 1.5 1.75	(Lpm)	12.44 12.75 13.10 13.39 13.62 13.79 14.02	(mS/cm) 1.13 1.19 1.21 1.21 1.21 1.21 1.21	5.29 4.29 3.92 3.67 3.48 3.63 3.58	7.63 7.57 7.55 7.54 7.54 7.54 7.54	-23 -57 -65 -68 -72 -72 -72 -71	229 274 254 220 198 178 141 129 114	(second	ds)			
(MM/DD/YY)	1255 13:00 1305 1310 1315 1320 1325 1330	8100) 34.30 34.31 34.34 34.36 34.36 34.38 34.38 34.38 34.39	0.25 0.5 0.75 0.75 1 1.25 1.5	(Lpm)	12.44 12.75 13.10 13.39 13.62 13.79 14.02 14.03	(mS/cm) 1.13 1.19 1.21 1.21 1.21 1.21 1.21	5.29 4.29 3.92 3.67 3.48 3.63 3.58 3.51	7.63 7.57 7.54 7.54 7.54 7.54 7.53	-23 -57 -65 -68 -72 -72 -72 -71 -70	229 274 254 220 198 178 141 129	(second	ds)			

Sample ID Numbers and Sample Time	Container Count, Volume & Type	Preservative	Parameter(s)
A0101-MW05-GW 1345	2 IZSML HOPE	MONE	PFAS.
		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	TOTAL SERVICE
August and seek the control of	Like the second		MINISTER CONTROL OF THE CONTROL OF T
			*
American de de la companya del companya de la companya de la companya de la companya del companya de la company	Constitution of the second	selle tribet	

							00000 00000		1.5						
LOCATION	Site: Fu	SHHSSI					101-N		Į.	ner -	Date: 10/13/20				
LOCATION	Project Na	me: ARNO	1 PFAS	>	da == ===	Project Numb			Recorded By: Checked By:						
***********	Sampling I	Equipment - Pum	ip: (neo te	ch Blo	older P	UMP		C	ontroller:	eo Control	Pro	Con	pressor: (CaeoControl Pro	
EQUIPMENT		el Indicator Type					er Quality Mete					W/90 F.V.	Hai	ndset ID: 18454	
		D#: N/A					ipment Decon:				T				
	Description	n: Flosh v	your t		Screen Inter	val (BTOC):	17-37	Initial De	enth to Wate	er (BTOC):	19.82	A	mbient PIC) (ppm):	
WELL &				NOW 2 WX		erval (BTOC): 27-37 Initial Depth to Water (BTOC): 29,97 Ambient PID (ppm): Pump Inlet Depth (BTOC): 33.5 Well Head PID (ppm):									
SAMPLING INFO	Historic Pump Settings: N/A - New well Condition of Well/Comments: Firsh mount grassy area Height of stick-up (ft): *														
4 0	NOTE: F	Tush mount		= 37.01.							,,,,,			3	
	£		لا ،	- 34.01.	tt ptoc		i Henri enterio			•	et and one of			<u> </u>	
Date	Time	Depth to	Volume	Pumping	Temp	Specific	DO	******	ORP	Turbidity	Pump Refi		Pump		
(MM/DD/YY)	(24 hr)	Water (BTOC)	Removed (gallons)	Rate (Lpm)	(°C)	Conductivity (mS/cm)	(mg/L)	рН	(mV)	(NTU)	Discharge (seconds		Pressure (PSI)	Comment	
10/13/20	1246	729.97		60	14.19	0,644	7.28	7.38	139	500	25/19		L8		
	1251	30.02		70	12,496		JH5 58	7.14	11	580	20/1	5	27		
	1256	30.22			12.20	1.45	6.00	7.03	17	280	1		1		
	1301	30,25		= "	12.03	1.44	6.28	7.03	28	206					
	1306	30,36			11.83	1.44	6.45	7.08	41	159			-		
	134	30,41			11.69	1.44	6.62	7.12	49	129					
	1316	30.49		-	11.59	1.44	6.71	7.15	54	103					
	1321	30.52	-2		11.47	1,45	6.79	7.16	56	81.2					
	1326		1		11.38	1.45	6.59	7.17	57	66,6		1	Territoria		
	1331	30.59			11.38	1.46	6.69	7.15	57	56.7		1			
. *	1336	30.63		V	11.37	1.46	6.63	7.11	57	50.2	*		*		

Pumping Rate: < 0.5L/min; Measurements: every 3 - 5 minutes; Stabilization is defined as the following for three consecutive readings: ± 3% Temp, ± 3% Conductivity; + 10% DO; ± 0.1 pH; ± 10mV ORP; 10% Turb

Sample ID Numbers and Sample I lime	Container Count, Volume & Type	Preservative	rarameter(s)
Asia: 14.20(. (.)	2× 125-44500 ML HD	PE Nove	PFAS
HOIOI-MOOG-GW			
A0101-MW06-GW @ 1358			
	the field to the field the	100	Toengri Miliogeri y
		911	
Shake Test (
	Charles and companies of the		

Page Z of Z

LOCATION	Site: Fu	OHH-SS	(LOCID: AOLO (-MW6					Date: 10	0-11-1		
LOCATION	Project Na	me: 60557	2172	ARNCI	PFAS	Project Numb	oer: 60567	172			Recorded By: 3 H		Checked By:	
Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate (Lpm)	Temp (°C)	Specific Conductivity (mS/cm)	DO (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Pump Refill/ Discharge (seconds)	Pump Pressure (PSI)	Comment	
10/13/20	1341	30.73	I	70	11.37	1.46	16661	7.07	58	39.8	20	27	31	
	1346	30.71		- (11.39	1.46	6.53	7.05	58	35.2	1	- 1		
	1351	30,72			11.39	1.47	6.54	7.03	58	32.8		2.	=	
	1354	i jes i iza	1,5	业	11.39	1.47	6.43	7.02	58	32.9	业	*		
坐	1358	592 -			- SA.	MPLEI	-	Hall to the					1	
\	الحدال	1 0	W = 2000/H	15										
_		35-1			FF 3. "		= 1811 f			Ser I				
						t les 5			7 1	April 6	1			
			_	1		WID I	6 17	(C -	1-2					
	12 12	177 72				F141	ST.		45.5					
		772			1 75	Time	400	1000		102		ATE I		
		19 15	ere med	1			19, 77					9 4	MEN THE TAXABLE !	
	Francis.	X						/			16 16 16 16 16 16 16 16 16 16 16 16 16 1	-422	_ = = = =	
		D1 - 1			9 - 18 1			1	1			e he		
27.00	1-1-		max.01		4.7	1-0.	X/a	$>\!\!\!<$		ere.		T342 IT I	n ==	
1717		45 17:1					XX		\swarrow	,		* -		
			Selective :			·	/			1	10.50	- 1		
TATE WILLS	(A) () (*)	10.74	IF THE		7.3		<1		W		De la	11 11 11 11		
10.37			to a fil	10			2-, 7:51		1		grand is			
			. 95	0					11	1				
III EXSERT					-2-						A-	- 		
7m 8m20 190		I falso les de la Re		variet (m.						, /		300		
WELL	Hara Tay		1.7					4 12	(A) (A) (A)	-1, 5-1, 50		Secretaria e	E. a a	
				HEIDEL I								1, 4	t te	
	r, pem	1 10 6				1.50	1212	1.0%1-				\		
TO THE STREET	Kille Tels	toni carilyts		1 19 677	- 7 3/20	19 M 80	er I pilge							
	- 212:	112/06/11/130		7 75	- T-	*				2-41	(-1	4 2 3 2 4		
			· ·	1 100	- 12, 12		i m ji			-12	W Table			
Gardina	A	-111 715										51		
					- a secti	1 1 1 E			2					

Pumping Rate: ≤0.5L/min; Measurements: every 3 - 5 minutes; Stabilization is defined as the following for three consecutive readings: ±3% Temp, +3% Conductivity; +10% DO; +0.1 pH; +10mV ORP; 10% Turb

_		_	
Pace	1	۸f	

LOCATION	Site: FT	HHW-	ļ	C TEX		LocID: Ac	12-MW	1	- #		Date: 10	112/20	- 41 31	
LOCATION		ne: FTW	HH SSI			Project Number: 60552172					Recorded By: Checked By:			
	Sampling E	quipment - Pu	mp: GEOTE	CH .				201	Compressor: GEOCONTROL					
EQUIPMENT	Water Leve	el Indicator Typ	e/ID#: 6150	TECH		Wa	ter Quality Mete	Type: Ho	RIBA S	onde ID: 4	4529	Han	dset ID: 19350	
	PID Type/II					Equ	ipment Decon:	-0303030303030	************	40000000000000000000000000000000000000	300030000000000000			
	Description	: Stick	υP		Screen inte	erval (BTOC) : 28-38 Initial Depth to Water (BTOC): 2					2.83 Ambient PID (ppm):			
WELL & SAMPLING		mp Settings:				Pump Inlet Depth (BTOC): 35'						Well Head P	ID (ppm):	
INFO			nts: Good					Height	of stick-up	(ft): ~3.	/'			
	1 -		5 Soi			mc: I	7.02	4						
****	2H	ake t	est he	56ATIV	E	*****	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7070XVXXXXXXX	******	90900000000000000000000000000000000000),(1),(1),(1),(1),(1),(1),(1),(1),(1),(1	*****	*************************	
Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed L (gallens)	Pumping Rate (Lpm)	Temp (°C)	Specific Conductivity (mS/cm)	DO (mg/L)	pН	ORP (mV)	Turbidity (NTU)	Pump Refill Discharge (seconds)	Pump Pressure (PSI)	Comment	
1 -	1500	22.83	1	0.2	12.41	1.69	6.94	7.42	114	120	7/40	30		
	1505	22.83	2		12.30	1.70	6.77	7.40	118	72.7	4-			
	1510	22.83	3		12.26	1.70	6.70	7.37	122	44.1				
	1515	22.83	4		12.17	1.71	6.87	7.34		31.5				
	1520	22.83	5		12.00	1.72	7,10	7.32	132	10.0	ĭ			
	1828	22.83	6		12.10	1.71	6.93	7.32	135	7.3				
	1530	22.83			12.06	171	6.88	7.31	137	2.7				
in and an and an	1535	22.83	8		11.94	1.72	7,21	7.32	139	23				
	1540	22.83	9		11.90	1.72	7.19	7.34	139	1.4	1			
				-							1	11,		
Takes in the second	1											V	. 40V ODD: 40W T::-	

Pumping Rate: < 0.5L/min; Measurements: every 3 - 5 minutes; Stabilization is defined as the following for three consecutive readings: ± 3% Temp; ± 3% Conductivity; + 10% DO; ± 0.1 pH; ± 10mV ORP; 10% Turb

Sample ID Numbers and Sample Time	Container Count, Volume & Type	Preservative	Parameter(s)
A012-MW1-EW 1540 A012-MW1-GW-DUP 1540	2 125 ML HDPE 2 125 ML HDPE		

Page	1 of	1
rauc	1 01	

	A A TILL		9.4			(1) = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	- L. J.	1100	AL INC.				Fage 1 01	
LOCATION	Site:	WHH	7		L	LocID: Ao	12-Mh	2			Date: 10 1	13/20	<u> </u>	
LOCATION			UHH SSI	+	T 000 474	Project Number: 60552172 Record						led By: TSR Checked By:		
*********	0.00303030303030	****	IMP: CIEDT				Controller: GEOCONTRO					Compressor: CIECONTROL		
EQUIPMENT	Water Leve	el Indicator Typ	oe/ID#: 660	TECH		Water Quality Meter Type: HORIBA Sonde ID:							indset ID: 19350	
	PID Type/II					Equ	ipment Decon:							
********	Description	n: Fwsh		*****	Screen Inter	rval (BTOC).	20-30	Initial De	enth to Wate	er (BTOC):	7.33	Ambient PII	D (ppm):	
WELL &		mp Settings:	MOUNT		GOLOGII IIIIO	863	20 00	_	let Depth (E		5'	Well Head		
SAMPLING INFO			ents: Good									1	- W. /	
	Condition of Well/Comments: GOOD Height of stick-up (ft): FLUSH NOTE: DTS: 28.70 SOFT BOTTOM WC: 11.37 GOOD PRODUCTION. NO										No Def	MONOGEN	C 70.5 LPM.	
	1	1.0	T NEE			le e a le								
**************************************	120010101000000000	Depth to	Volume	Pumping		Specific	ecific DO		ORP	Turbidity	Pump Refill/	Pump		
Date (MM/DD/YY)	Time (24 hr)	Water (BTOC)	Removed	Rate (Lpm)	Temp (°C)	Conductivity (mS/cm)	(mg/L)	pН	(mV)	(NTU)	Discharge (seconds)	Pressure (PSI)	Comment	
	0920	17.33		200	10.85	0.590	8.61	7.29	200	495	5/20	20		
	0925		2		10.71	0.592	8.62	7.35	198	354		1		
	0930		3		10.63	0544	8.59	7.38	196	277	1 3			
	0935		4		10.55	0.595	8,57	7.40	195	201		-		
	0940	i i i i i i i i i i i i i i i i i i i	5		10.39	0.596	8.61	7.42	194	159		-		
	0945		6		10.43	0.598	8.57	7.43		134				
	0950		7		10.35		8.57	7,44	192	112			12 72 72 7	
	0955		8		10,36	0.600		7,45		89.9			H	
	1000		9		10.34	0.600		7.45	+	78.7				
	1005		10		10.34	0.601	8.48	7.45		63,7	-			
	1010	V	H	V_	10.35	0.602	8.52	7.45	189	60.5	V	_ V	CONTINUED ON	
			every 3 - 5 minut	es; Stabilizatio									l; ± 10mV ORP; 10% Turb	
Sample ID Nu	mbers and S	sample Time				·	Volume & Typ		Preservat			meter(s)		
	DN17-4	W 12-C-	1	·-	12	175 M	TROPE		NON	LE	TFA	5		

Sample in Rumbers and Sample Time	Container County Volume & Type	1100011441170	· uramoto (o)
AD12-MW2-GW 1015	2 125 ML THOPE	NONE	77AS
		was a state	
			Territoria esta de la compania del compania del compania de la compania del compania del compania de la compania del compa
		SUES TO PER THE PER	TITLE ATTEMPT OF THE
702,000	10		
	touri? (see catalog rema	some Casar	ya.

Page ___ of ___

LOGATION	Site:	****		25.30	- 14	LocID:					Date:		- 197
LOCATION	Project Na	me:				Project Number	er:				Recorded By:		Checked By:
Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate (Lpm)	Temp (°C)	Specific Conductivity (mS/cm)	DO (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Pump Refill/ Discharge (seconds)	Pump Pressure (PSI)	Comment
2.100	1015	17.33	12	0.2	10.37	0.601	8.53	7.46	189	52.7	5/20	20	
											* = -		
1	DV5 =		10		3	10,000	Wy. r		Virtue.		1 . +/		
0.005935 05	10 (20 Val. 7)				- 1	11 C 1 W			and the				
and the latest	ata di s	AS THE RESERVE						y 2 12 17	- 1				
	10 16 1	- A			1073.3	12 FEET	200	1.20	<u> </u>	SE 132	- A		F 7617 7.
	IDE-I		175		10:54	D. M. F.	L'est	17.25		ALLE			
	1000	-	1 - 4 - 10		T: III		035	143	1,13	1000			
100.00	MA.				ps: 57	S. Acci	Theta	1000	171	3767	*30 100 0		
	1.5	1 mm			12153	(A. V.)	0171	4.47		475		7.	
F - 124	1145		A.,		·			11.5	100	12.4		-	
	5.00	1 :			Te. 17		7 7.		7 111	- 20.5			
	al Par				18 35	7 15 1	Do not	1545	<u> </u>				and the second
	1 De 1	- 1			ir is s		7 10 10 10						
	1.33.7				100 777	- TR	0.415					- 1	
	L TEXT	op DONAL!	7 -	37.	187 - T	7 17 2		4-11		Thea			
		Towns 1	re increase ?	F/m 17	17 6-65			-					
1975 775 1975	136		There !	1 2	1(6)	57 2 · 1	140117	- 194	100	1816	e redii l	e entre	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
				100	-x1 - 12	1-1-1				135			
		1 1 1 1 1 1 1	- FIRST	F-1-1									
	Trans.		1.5	1				1		ne:	C 12541	70-17	100 50 810 1
200	-toughthat	JAMES VILLE VA	2 10 10 1	21 3				- 010			19		
ritetti y		TOTAL SUN				1.07%		12/47/15				MASS IN THE	1.7
	225			Maria Arm	- 10					Taster 1		morning the	
	127.0 00					1, 1, 1, 1, 1		Marie III		15 15 15 15 E	, a library flower	The Company of the Co	e per a de Teo Caldin
CTORESTS.	mater that	= mc=	Carr.	17-77			(inst)		E 1224		425-F	7.0	0 - 14.92D
	no envir	Maintine &	E Great	4.74	- 100-100-100-100-100-100-100-100-100-10			3.2	free (Firt	udb teres i	GIFT- WERE
- 1	S. J. Y	1 1 14	517 -				757	j		L E	Famifilia	22	
COVARIA				= =	(4)				164		216-16 11		
			-2 7 - 114,	and the s		,						-	

Pumping Rate: < 0.5L/min; Measurements: every 3 - 5 minutes; Stabilization is defined as the following for three consecutive readings: ±3% Temp, +3% Conductivity; +10% DO; +0.1 pH; +10mV ORP; 10% Turb

LOCATION	Site: FL	OHH S	51	3 = 100		LocID: AO	102-M	J3			Date: LO	114/2	0	
LOCATION		me: ARN		45		Project Numb	er: 6055	2172			Recorded By:	HL	Checked By:	
	Sampling E	Equipment - Pun	np: Geotec	h Blue	der Pu	mp		Co	ontroller: (-	eo Contro	(PO 0	Compressor:	Geo Control Pro	
QUIPMENT	Water Leve	Indicator Type	e/ID#: Greate	ch Interfa	ace Probe	14678 Wate	4678 Water Quality Meter Type: U-SZ Sonde ID: 25314 Handset ID: 1845Y							
**********	PID Type/II	D#: N/A		1010101010101010101	assassassassas	Equi	pment Decon:	Liqui.	wy	300000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000000000		
	Description	n: Flush	mount		Screen Inte	rval (BTOC): 💈	50-40	Initial De	pth to Wate	er (BTOC): 7	4.22	Ambient Pl	D (ppm): N/A	
WELL & AMPLING	Historic Pump Settings: N/A - New Pump Inlet Depth (BTOC): 36 Well Head PID (ppm):							PID (ppm): /U/A						
INFO	Condition o	Condition of Well/Comments: growel purkting lot Height of stick-up (ft): 0.36 ft bgs												
		D= 39.)	-				7: -		3	4	
		N= 34.	79 34	610C	@101111010101010101		***********	and an analysis and a	******************************	350000000000000000000000000000000000000	00000000000000000000	000000000000000000000000000000000000000		
Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate (Lpm)	Temp (°C)	Specific Conductivity (mS/cm)	DO (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Pump Refill/ Discharge (seconds)	Pump Pressure (PSI)	Comment	
114/20	1052	24.04	13	240	11.98	1.74	6,49	7.26	24	1092	15/15	26	Pump on@ 1048	
1	1057	24.11		-1	11.66	1.77	5.14	6.67	34	800	[]			
	1102	1	762 - 22	4	11.57	177	5.11	6.61	44	635	-	4		
	1107				11.40	1,77	536	6.60		432				
							1 07		,	1000				
	1112		_1		11.49	1.77	6.23	6.73	56	295				
	1117				11,44	1.77	6.17	6.59	62	231				
	1117				11.44	1.77	6.17	6.59	62	231 176				
	1117 1122 1127				11,44	1.77	6.17	6.59	68	231 176 130				
	1117 1122 1127 1132				11.43	1.77 1.77 1.77	6.17	6.59 6.47 6.45	62 65 68 70	231 176 130 93.4			U-52 lost it's seal, 8+	
	1117 1122 1127				11.43	1.77	6.17	6.59	68	231 176 130			U-52 lost it's seal, &t	

Sample ID Numbers and Sample Time

Container Count, Volume & Type

Preservative

Parameter(s)

2 x 125 mL HDP2

None

PFAS

Shake test ©

Shake test ©

Page 2 of Z

LOCATION	Site:	DHH 4	351	-	4	LocID: A-E	102-1	43		-W40-	Date: (0/1	4/20	
LOCATION			GPFAS			Project Numb	er: 6055	52172	Recorded By: J 1- Checked B				
Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed (galions)	Pumping Rate (Lpm)	Temp (°C)	Specific Conductivity (mS/cm)	DO (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Pump Refill/ Discharge (seconds)	Pump Pressure (PSI)	Comment
0/14/20	1152	24.11	2.8	240	11.88	1.78	6.49	6.54	68	46.7	15/15	26	
10/14/20	1157	I was	15H		11.62	1.78	6.32	6.48	69	34.0	- i	1	
V	1202		3		11.59	1,78	6.31	6.46	71	38.8	1 0.0	75	
nice et ania	1207	was die			11.33	1.78	6.52	6.41	70	25.4	2.600		
tatori e e	1211	a mie i i i	3.5	2 neth urbus	11,36	1.78	6.30	6.57		24.8			
P.	1215			7179	11.51	1.78	6.38	6.54	7-1	23.1			
	1218	7	4	· ·	11.62	1.78	6.55	6.49	73	13.1	W.	V	
V	1220		4,5		- 51		0	ر درلسانها	15	Heat			
/	TITE				Loren I	1777,5	THE JET	(i]	- P 3 -	175/			
					Mala		TOP	6.25	12-3-				16+ 7
	171 .							2015	75-5-				
	7. 7.	1	/		ira h	7.1-3	1	- 1	3%	137,5			72
	161		/	/	age vi	1	7		72.3				
71 1	WS2.5			/	\ >	2/	The state of		1.11	FEA.		-	
	1750.4	62.5	1 3 6	-	1	aXXX	1	4.00	12.5	300			H
The state of	1627			a 45.	/	XXX.	11	1		The state of	art T	-67	1-27 6
		T lave! "	Service of	- 440		_			==2	X	The second		
BRIE	175	Profesion	5/41			One of the second	11	- #0 T	-	a mark de t	Bront.	1746 4	District Control of the
711111					in the								
		000	44 35 7				ISBN 117 DIRECTOR OF THE SECOND					a mate si	
			- American	- Barry sun et	- 1,								15.0
vizioni ka				Pro Kill					- /	·		5	- 100
MCTATE T	15			Aver 1	12 720	I		1 186		1		Market A	in ve
	1000 1000 100		- 11 -11 -1	- 23								Etimoe Inf	11117
		2 17				Leville	For Televin	1.00	2.8	1 7 75 10			e la re-Meyeral H
UTTERSTALL I	VSIB TH		ings (= *****)	2 A-Lift		a Carrie	Tone Held	0	170	Fig. 9	2,217		gento I Pate C
188 (181)	2 700	- 198	0.000	r sylver	V-1 (*)	of the		li gl	Ter sa	God Confre			PET BELLEV
	1 -17-4		12 7 7 7	6 - 0 FS						Top Tal.	* 5-3-1		
10010061	-07				1			T = 3	-				
			A					= =			20120	101	

Pumping Rate: ≤0.5L/min; Measurements: every 3 - 5 minutes; Stabilization is defined as the following for three consecutive readings: ±3% Temp, +3% Conductivity; +10% DO; +0.1 pH; +10mV ORP; 10% Turb

A
A I

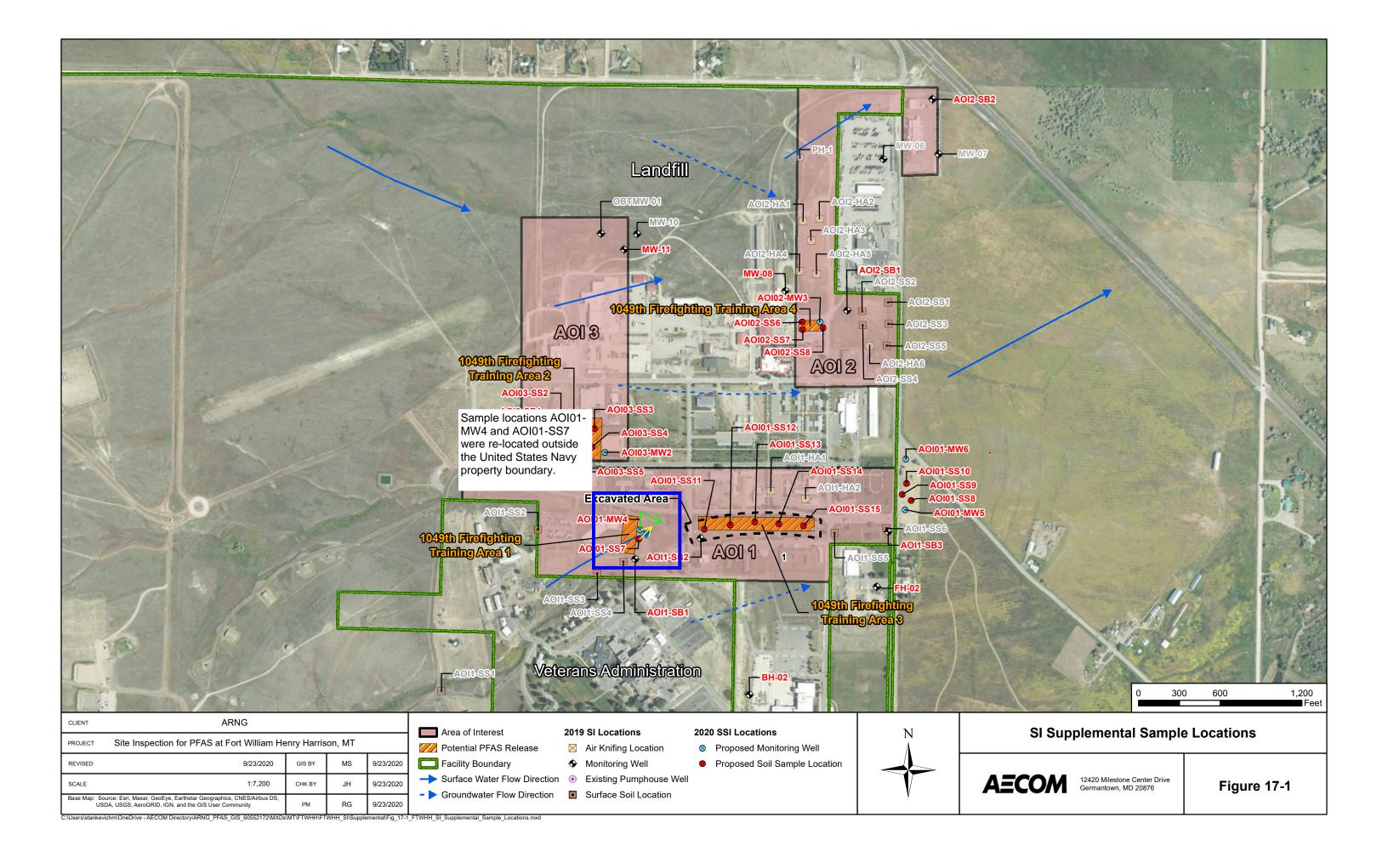
Page 1 of

LOCATION	Site: FT	HHW	SSI			LocID: A	113-MI	NL				7 20			
LOCATION		me: FT W				Project Number: 60552172						Recorded By: Checked By:			
	Sampling I	Equipment - Pur	np: GEO	ECH				C	ontroller: ϵ	IEO CONT	POL (Compressor:	GEOCONTROL		
EQUIPMENT	Water Lev	el Indicator Type	e/ID#: GEO	TECH		Wa	ter Quality Mete	er Type: H	ORIBAS	Sonde ID:	14529	На	indset ID: 19350		
	PID Type/I	D#:		2020101012222222	010000000000000000000000000000000000000	Equ	ipment Decon:			***********		***********			
	Description	n: Stick	JP		Screen Interval (BTOC): 48-58 Initial Depth to Water (E					er (BTOC):	3.87	Ambient Pl	D (ppm):		
WELL & SAMPLING		ımp Settings:						Pump Ir	nlet Depth (E	STOC): 5(0.5	Well Head	PID (ppm):		
INFO	Condition	of Well/Commer	nts: GOOT)			2 83 10	Height	of stick-up	(ft):~3¹					
		JTB: 61		NC: 17	1.84										
	SHA	KE TE	ST NE	BATIVE	_				A						
Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate (Lpm)	Temp (°C)	Specific Conductivity (mS/cm)	DO (mg/L)	pН	ORP (mV)	Turbidity (NTU)	Pump Refill/ Discharge (seconds)	Pump Pressure (PSI)	Comment		
09/20	1600	44.98	0.5	100	17.68	1.08	1.68	7.49	98	201	L	lies we	SLOW RECHARL		
	1605	45.10	1.0	100	18.17	1.10	0.88	7.49	79	166			WELL DRAWING		
te tr	1610	45.18	1.25	50	18.79	1.10	1.89	7.58	75	154	5 - 2 200		Down.		
	1615	45.35	1.5	S	19.01	1.11	1.98	7.58	74	147	i		A		
	1620	45.54	1.75	50	19.26	1.10	1.95	7.58	74	136	-				
	1625	45.72	2.0	50	19.28	1.10	2.02	7.57	74	136		1 1 1 1 1			
										i i					
		1						* } **			I and I am	-			
		Character (de-			-						======				
							F	:		1		10000			
			every 3 - 5 minute	es; Stabilization									l; ± 10mV ORP; 10% Turb		
Sample ID Nur	nbers and	Sample Time			Cont		Volume & Typ	oe	Preservat			neter(s)			
AOI	3-Mu	1-GW	1625	5	2	125 ML	HOPE		Moni	The second	Y-HA	45			
						1421 11		1-1-		4		o n cala			
	52.7		in the party of	17.4		-			William	1 1 1 1 1 1	6.0.27	1 1520	The second secon		

	-	0	-
		7,7	7
/ mu			

Page 1 of

												01	
LOCATION		28 HHC			ask a	LocID: AC					Date: 10/1		Checked Dur
LOCATION	Project Nan	ne: ARNO	a PFA	S		Project Number	er: 60825	************	2157873333737373		Recorded By:	*****	Checked By:
EQUIPMENT	Water Leve	I Indicator Type	np: Geotec e/ID#: Geote	h Bladd ch Intest	er Pump ace Probe	14678 Wate	r Quality Meter	Type: 🐧	-52 Sc	onde ID: 25			set ID: 18454
	PID Type/ID	#: N/A	*************	********	**********	Equip	oment Decon:	randana arabana	****	*****	0.200.200.200.200.200.200.200.200.200.2	A LI A DID A	
	Description	: Flosh	mount	1 0-4	Screen Inte	rval (BTOC): 5	0-60			(BTOC): 4		Ambient PID (
WELL & SAMPLING			3/A - Ne						et Depth (B		~	Well Head PII	у (ррии).
INFO	Condition o	f Well/Comme	nts: Grassy	Area				Height	of stick-up	(n): 049	A btoc		
	NOTE:	>=60.3	6	1					000000000000000000000000000000000000000	***********	**********		
Date (MM/DD/YY)	Time (24 hr)	Depth to Water (BTOC)	Volume Removed (gallons)	Pumping Rate ~(Lpm)	Temp (°C)	Specific Conductivity (mS/cm)	DO (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Pump Refill/ Discharge (seconds)	Pump Pressure (PSI)	Comment
16/13/20	1522	47.01	(guilotto)	190	11.52	0.758	8.75	7.61	142	141	20/15	33	
TOLISTON	1527	47.48		90	11,42	0.792	8.51 JH	8.517	60 151	G-25.6	30/15	33	15 1 2 1/2 14 1 1 1 1
	1532	400		1	11.33	0,820	8,64	7.55	154	1.6	1		
	1537	48.45	F 1 1 3		11.21	0.825	9.00	7.52	156	0.0			
-	1542	48.74			11.19		8.88	7.51	157	0.0		1-1-	
	1547	49.25	~0.5	1	11.10	0,826	8.74	751	160	0.0	7		
¥	1555		94	MPLES)	11.							
					1	1///	1						
					4	1100							
						71	12						
				04-1-7741-	a to defined	an the following	for three conse	cutive read	lings: + 3% 7	Temp. + 3% Co	nductivity: + 10	% DO; ± 0.1 pH;	± 10mV ORP; 10% Turb
			every 3 - 5 minut	es; Stadinzatio	Cor	ntainer Count,	Volume & Tvo	e	Preservat	ive	Para	meter(s)	
Sample ID Nu	mpers and	Sample I line	-	time the contract		125 ml		100	NOW	0	PE	AS	
- Λ	m(m2	11.797 -	(2W)		63	1 LS MC	HVIC	-	N DV	T common	1 -	THE P	
A	0(05-7	Oloce	<u>.</u>			-	GE	-41	-W			ence ente fig	
		0 1	555		-	7-16-17			=3.5		· Tipsuran	1000	
A0103-MW0Z-GW							1 86	1 =		a lateral	Series.	(A)	2007 - 1,
			77				ShK-II I	= 11	100 100 110		. 1		
Tex TIM	SHake	e test (9		-			7773	= 4	5.13.17	1 TO 1		
						- 17				S == 20 / 10	4 1		5 1 -120 - 11-12 - 11-


Appendix B3 Field Change Request

Site Inspection Report Fort William Henry Harrison, MT

THIS PAGE INTENTIONALLY BLANK

AECOM Technical Services Inc. Field Change Request Form

Report Number:	FC	CR001	Location:_	FTWHH, MT
Document Title:	FTWHH S Addendun		Contract Number:	W912DR-12-D-0014 DO: W912DR17F0192
Description of Field	d Change:	1. Samı locat	ple locations. ple locations AOI01-M\ ed outside the United S dary.	W4 and AOI01-SS7 were re- States Navy property
Proposed Disposit	ion:	See attached	I map for revised samp	le locations.
Submitted by:	Andrew	Borden	Date: 10/06/	/2020
Completed by:	Jady Ha	rrington	Date: 10/06/	/2020
Verified by (SI Task Manage	e r): Jady Ha	ırrington	Date: 10/06/	/2020

Appendix B4 Survey Data

Site Inspection Report Fort William Henry Harrison, MT

THIS PAGE INTENTIONALLY BLANK

	NAD83 Montana St	ate Plane (Meters)	NAVD88 (Meters)		NAD83 Montana St	ate Plane (US Feet)	NAVD88 (US Feet)
Monitoring Well	Northing	Easting	Elevation	Monitoring Well	Northing	Easting	Elevation
OBTMW-01	267497.022	400770.260	1213.887	OBTMW-01	877613.145	1314860.426	3982.56
100n (Unknown well)	266531.141	401103.547	1209.353	100n	874444.250	1315953.885	3967.68
101n (Unknown well)	267467.597	400785.605	1214.448	101n	877516.606	1314910.772	3984.40
103n (Unknown well)	267630.881	400743.135	1215.008	103n	878052.314	1314771.434	3986.24
104n (Unknown well)	267687.847	400824.437	1213.538	104n	878239.210	1315038.174	3981.41
105n (Unknown well)	267703.486	400947.258	1211.727	105n	878290.520	1315441.127	3975.47
AOI2-MW2	267798.177	401512.485	1202.938	AOI2-MW2	878601.186	1317295.543	3946.64
AOI1-MW1	266767.303	400846.490	1214.911	AOI1-MW1	875219.058	1315110.524	3985.92
AOI1-MW2	266814.030	400993.271	1211.986	AOI1-MW2	875372.362	1315592.090	3976.32
AOI1-MW3	266829.155	401413.141	1203.581	AOI1-MW3	875421.986	1316969.613	3948.75
AOI2-MW1	267325.136	401321.387	1204.215	AOI2-MW1	877049.217	1316668.584	3950.83
AOI3-MW1	267049.613	400664.748	1220.247	AOI3-MW1	876145.272	1314514.261	4003.43
BH-02	266464.248	401102.623	1209.467	BH-02	874224.787	1315950.854	3968.06
FH-02	266705.708	401387.716	1205.470	FH-02	875016.977	1316886.198	3954.95
MW-05 (Unknown well)	267670.122	401313.294	1205.481	MW-05	878181.059	1316642.030	3954.98
MW-06	267664.173	401402.622	1204.739	MW-06	878161.539	1316935.101	3952.55
MW-07	267675.132	401526.336	1203.476	MW-07	878197.494	1317340.986	3948.40
MW-08	267369.169	401183.186	1206.757	MW-08	877193.680	1316215.168	3959.17
MW-10	267496.453	400850.955	1212.221	MW-10	877611.278	1315125.175	3977.10
MW-11	267461.248	400821.793	1213.470	MW-11	877495.776	1315029.498	3981.19
MW-12 (Unknown well)	267539.643	400830.324	1213.250	MW-12	877752.979	1315057.488	3980.47

Well ID	Northing	Easting	TOC	Ground
AOI1-MW1	875220.810	1315113.156	3985.928	
AOI1-MW2	875374.114	1315594.721	3976.332	
AOI1-MW3	875423.737	1316972.247	3948.757	
AOI01-MW04	875496.685	1315327.696	3975.455	3975.628
AOI01-MW05	875592.893	1317100.063	3947.701	3947.993
AOI01-MW06	875975.687	1317096.927	3948.092	3948.432
AOI01-SS7	875484.131	1315277.494		3975.193
AOI01-SS8	875692.713	1317131.160		3947.390
AOI01-SS9	875747.408	1317073.586		3947.845
AOI01-SS10	875842.198	1317080.696		3947.635
AOI01-SS11	875409.363	1315601.501		3969.618
AOI01-SS12	875442.543	1315696.218		3961.785
AOI01-SS13	875451.320	1315980.835		3957.691
AOI01-SS14	875461.572	1316206.608		3952.336
AOI01-SS15	875467.984	1316284.886		3952.473
AOI2-MW1	877050.971	1316671.217	3950.837	
AOI2-MW2	878602.943	1317298.179	3946.647	
AOI02-MW03	876961.658	1316453.436	3953.356	3953.680
AOIO2-SS6	876962.875	1316216.825		3959.411
AOIO2-SS7	876890.704	1316221.714		3960.062
AOIO2-SS8	876879.669	1316446.436		3954.411
AOI3-MW1	876147.024	1314516.890	4003.435	
AOI03-MW02	875991.588	1314899.271	3993.341	3993.621
AOI03-SS1	876032.448	1314544.505		3999.524
AOI03-SS2	876115.998	1314543.599		3997.319
AOI03-SS3	876219.826	1314834.194		3991.861
AOI03-SS4	875955.464	1314806.367		3994.966
AOI03-SS5	875923.499	1314808.929		3995.775
MW-05	878182.815	1316644.665	3954.990	
MW-06	878163.297	1316937.736	3952.556	
MW-07	878199.252	1317343.622	3948.412	
MW-08	877195.436	1316217.802	3959.177	
MW-10	877613.035	1315127.805	3977.133	
MW-11	877497.533	1315032.129	3981.201	
MW-12	877754.734	1315060.118	3980.479	
BH-02	874226.535	1315953.488	3968.068	
FH-02	875018.727	1316888.832	3954.954	
OBTMW-01	877614.902	1314863.058	3982.569	
Flushmount1	874446.001	1315956.519	3967.694	
Stickup1	877518.363	1314913.402	3984.409	
Stickup2	878054.072	1314774.065	3986.247	
Stickup3	878240.968	1315040.804	3981.424	
Stickup4	878292.277	1315443.760	3975.482	

Site Inspection Report Fort William Henry Harrison, MT

THIS PAGE INTENTIONALLY BLANK

Army National Guard, Site Investigation for PFAS Fort William Henry Harrison

Helena, Montana

Photograph No. 01

Date 2/12/2019 **Time** 17:17

Description:

Collection of shallow soil samples from air knife location. Dedicated stainless steel ladle used to scrap soil from side of borehole from the required depth interval.

Orientation:

NA

Photograph No. 02

Date 2/12/2019 **Time** 17:18

Description:

Stainless steel bowl with soil from air knife boring.

Orientation:

NA

AECOM Page 1 of 9

Army National Guard, Site Investigation for PFAS

Fort William Henry Harrison

Helena, Montana

Photograph No. 03

Date 2/12/2019 **Time** 13:10

Description:

Very cold weather and snowy roads. Parked near running path used to access drilling location for well installation at AOI1-MW1.

Orientation:

North

Photograph No. 04

Date 2/13/2019 **Time** 11:55

Description:

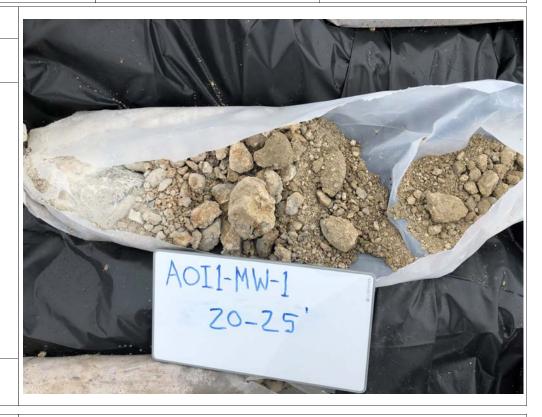
LS250 MiniSonic drill rig positioned to drill boring AOI1-MW1.

Orientation:

Southeast

AECOM Page 2 of 9

Army National Guard, Site Investigation for PFAS Fort William Henry Harrison


Helena, Montana

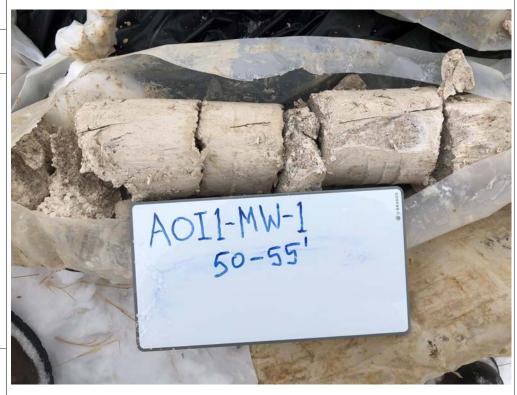
Photograph No. 05

Date 2/13/2019 **Time** 14:09

Description:

Soil core from AOI1-MW1 (20-25 feet BGS).

Orientation:


NA

Photograph No. 06

Date 2/13/2019 **Time** 16:42

Description:

Soil core from AOI1-MW1 (50-55 feet BGS).

Orientation:

NA

AECOM Page 3 of 9

Army National Guard, Site Investigation for PFAS

Fort William Henry Harrison

Helena, Montana

Photograph No. 07

Date 2/15/2019 **Time** 10:56

Description:

Soil core from AOI1-MW2 (0-5 feet BGS).

Orientation:

NA

Photograph No. 08

Date 2/15/2019 **Time** 11:01

Description:

Soil core from AOI1-MW2 (25-35 feet BGS).

Orientation:

NA

AECOM Page 4 of 9

Army National Guard, Site Investigation for PFAS Fort William Henry Harrison

Helena, Montana

Photograph No. 09

Date 2/15/2019 **Time** 11:02

Description:

Soil core from AOI1-MW2 (30-35 feet BGS).

Orientation:

NA

Photograph No. 10

Date 2/16/2019

Time 9:27

Description:

Completed stickup monitoring well AOI1-MW2.

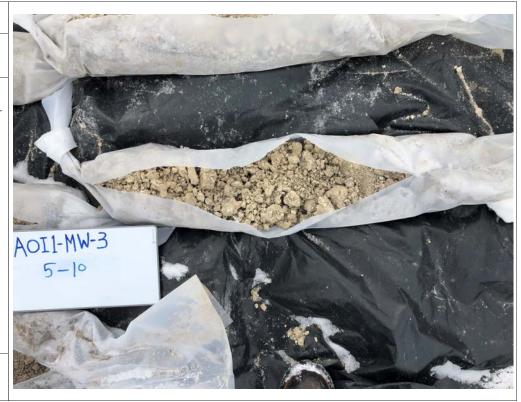
Orientation:

North

AECOM Page 5 of 9

Army National Guard, Site Investigation for PFAS

Fort William Henry Harrison


Helena, Montana

Photograph No. 11

Date 2/20/2019 **Time** 10:32

Description:

Soil core from AOI1-MW3 (5-10 feet BGS).

Orientation:

NA

Photograph No. 12

Date 2/20/2019 **Time** 10:42

Description:

Soil core from AOI1-MW3 (45-50 feet BGS).

Orientation:

NA

AECOM Page 6 of 9

Army National Guard, Site Investigation for PFAS

Fort William Henry Harrison

Helena, Montana

Photograph No. 13

Date 5/21/2019 **Time** 9:21

Description:

Soil core from AOI2-MW1 (0-5 feet BGS).

Orientation:

NA

Photograph No. 14

Date 5/21/2019 **Time** 10:26

Description:

Soil core from AOI2-MW1 (30 feet BGS).

Orientation:

NA

AECOM Page 7 of 9

Appendix C - Photographic Log

Army National Guard, Site Investigation for PFAS Fort William Henry Harrison

Helena, Montana

Photograph No. 15

Date 5/23/2019 **Time** 9:32

Description:

Soil core from AOI2-MW2 (5 feet BGS).

Orientation:

NA

Photograph No. 16

Date 5/23/2019 **Time** 10:57

Description:

Soil core from AOI2-MW2 (20-25 feet BGS).

Orientation:

NA

AECOM Page 8 of 9

Appendix C - Photographic Log

Army National Guard, Site Investigation for PFAS

Fort William Henry Harrison

Helena, Montana

Photograph No. 17

Date 5/21/2019 **Time** 16:40

Description:

Soil core from AOI3-MW1 (10 feet BGS).

Orientation:

NA

Photograph No. 18

Date 5/22/2019 **Time** 10:33

Description:

Soil core from AOI3-MW1 (50 feet BGS).

Orientation:

NA

AECOM Page 9 of 9

Army National Guard, Preliminary Assessment for PFAS

Fort William Henry Harrison

Helena, Montana

Photograph No. 19

Description:

Preclearing a boring location using an air knife and vac truck at Fire Training Area # 4 in AOI 2.

Photograph No. 20

Description:

HSA rig set-up on AOI01-MW04.

Army National Guard, Preliminary Assessment for PFAS

Fort William Henry Harrison

Helena, Montana

Photograph No. 21

Description:

Soil core from AOI01-06-SB, 05-07 ft bgs.

Photograph No. 22

Description:

Soil core from AOI01-06-SB, 15-17 ft bgs.

Army National Guard, Preliminary Assessment for PFAS

Fort William Henry Harrison

Helena, Montana

Photograph No. 23

Description:

Soil core from AOI01-06-SB, 20-22 ft bgs.

Photograph No. 24

Description:

Soil core from AOI01-06-SB, 25-27 ft bgs.

Army National Guard, Preliminary Assessment for PFAS

Fort William Henry Harrison

Helena, Montana

Photograph No. 25

Description:

Soil core from AOI01-06-SB, 30-32 ft bgs.

Photograph No. 26

Description:

Soil core from AOI01-06-SB, 35-37 ft bgs

Army National Guard, Preliminary Assessment for PFAS

Fort William Henry Harrison

Helena, Montana

Photograph No. 27

Description:

Soil core from AOI03-MW2, 5-7 ft bgs.

Photograph No. 28

Description:

Soil core from AOI03-MW2, 10-12 ft bgs.

Army National Guard, Preliminary Assessment for PFAS

Fort William Henry Harrison

Helena, Montana

Photograph No. 29

Description:

Soil core from AOI03-MW2, 15-17 ft bgs.

Photograph No. 30

Description:

Soil core from AOI03-MW2, 25-27 ft bgs.

Army National Guard, Preliminary Assessment for PFAS

Fort William Henry Harrison

Helena, Montana

Photograph No. 31

Description:

Soil core from AOI03-MW2, 30-32 ft bgs.

Photograph No. 32

Description:

Soil core from AOI03-MW2, 35-37 ft bgs.

Army National Guard, Preliminary Assessment for PFAS

Fort William Henry Harrison

Helena, Montana

Photograph No. 33

Description:

Soil core from AOI03-MW2, 45-47 ft bgs.

Photograph No. 34

Description:

Soil core from AOI03-MW2, 45-47 ft bgs.

Army National Guard, Preliminary Assessment for PFAS

Fort William Henry Harrison

Helena, Montana

Photograph No. 35

Description:

Soil core from AOI03-MW2, 50-52 ft bgs.

Photograph No. 36

Description:

Soil core from AOI03-MW2, 50-52 ft bgs,

Army National Guard, Preliminary Assessment for PFAS

Fort William Henry Harrison

Helena, Montana

Photograph No. 37

Description:

Soil core from AOI03-MW2, 55-57 ft bgs.

Photograph No. 38

Description:

Well construction and pad at AOI03-MW02.

Appendix D TPP Meeting Minutes/Montana DEQ Memorandum

Site Inspection Report Fort William Henry Harrison, MT

THIS PAGE INTENTIONALLY BLANK

Meeting Minutes Henry Harrison (FTWHH) – Sit

Fort William Henry Harrison (FTWHH) – Site Inspection Technical Project Planning (TPP) – Meeting 1/2

Preliminary Assessments and Site Inspections (PA/SIs) for Perfluorooctanesulfonic Acid (PFOS) and Perfluorooctanic Acid (PFOA) Impacted Sites Contract No.W912DR-12-D-0014, DO W912DR17F0192

Thursday, 8 November 2018 0900 to 1430

Participants Participants								
Name	Affiliation*	Phone	E-Mail					
Bonnie Packer	ARNG IED	703-607-7977	bonnie.m.packer.ctr@mail.mil					
LTC Adel Johnson	MTARNG-ENV	406-324-3089	adel.m.johnson.mil@mail.mil					
MAJ Mike Talia	MTNG-Legal	406-324-3325	michael.p.talia.mil@mail.mil					
MSgt Michael Touchette	MTARNG-PA	406-324-3009	michael.a.touchette2.mil@mail.mil					
Scott Gestring	Montana DEQ	406-444-6471	sgestring@mt.gov					
Rob Halla	ARNG IED	703-607-7995	walter.r.halla2.civ@mail.mil					
Wade M. Juntunen	MTARNG-ENV	402-324-3088	wade.m.juntunen.ctr@mail.mil					
Rebekah Myers	MTARNG-ENV	406-324-3087	rebekah.l.myers2.nfg@mail.mil					
Virgil Kaiser	MTARNG-ENV	406-324-3085	virgil.b.kaiser.nfg@mail.mil					
Jamey Thibodeau	VA Fire Department	406-447-7770	jamey.thibodeau@va.gov					
Leslie Holz	VA Environmental	406-447-7121	leslie.holz2@va.gov					
Steve Gragert	USACE-Omaha	402-995-2743	steve.p.gragert@usace.army.mil					
Marc Anderson	USACE-Omaha	402-995-2285	marc.d.anderson@usace.army.mil					
Jady Harrington	AECOM	402-952-2533	jacquelyn.harrington@aecom.com					
Jennifer Zorinsky	AECOM	402-952-2563	jennifer.zorinsky@aecom.com					

*ARNG IED-Army National Guard Installations & Environment Division, Cleanup Branch; MTARNG-ENV-Montana Army National Guard-Environmental; MTNG-Montana National Guard; MTARNG-PA-MTARNG Public Affairs; Montana DEQ-Montana Department of Quality; VA-Veterans Administration; USACE-United States Army Corps of Engineers; and AECOM-AECOM Technical Services, Inc.

Bonnie Packer (ARNG IED) welcomed participants and began the meeting with a role call and introductions. The sign-in sheet is included as **Attachment A** to these meeting minutes. The meeting focused on perfluoroalkyl and polyfluoroalkyl substances (PFAS) releases at Fort William Henry Harrison and the proposed sampling approach.

Jady Harrington, Task Manager for AECOM, began the presentation, and the briefing slides are included here as **Attachment B**. Key points discussed during the presentation are provided below.

As a local safety reminder, slips, trips, and falls were covered due to the cold, snowy, and icy weather. The SI will conform to requirements in USACE Engineering Manual 385-1-1. Site-specific safety procedures will be planned for and followed during SI field work, including establishing controlled work zones during field activities. The site-specific Draft Accident Prevention Plan (APP) is awaiting USACE concurrence on response to comments. Steve Gragert (USACE) will follow-up with the USACE reviewers.

Programmatic Discussion:

The TPP process is a USACE established process with the main goal of engaging stakeholders in project planning and reporting. The ARNG has embraced a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) model for the PFAS PA/SIs nationwide.

- The TPP2 meeting will provide an opportunity for stakeholders to discuss the SI Work Plan; regulatory stakeholders will be afforded the opportunity to formally review and comment on the SI Work Plan. Jady Harrington also indicated that the TPP1 would serve as the TPP2. Sample rational and locations would be presented later in the presentation. In addition, a visual reconnaissance of sample locations would be completed after the presentation for discussion/concurrence.
- The TPP3 meeting presents the SI Report findings to all stakeholders; again, regulatory review and comment of the document will occur.
- The ARNG PFAS program and is centrally contracted through USACE and managed by ARNG. Every ARNG facility nationwide responded to a questionnaire on potential PFAS releases. Facilities were prioritized by the likelihood of release and proximity to drinking water sources. FTWHH was identified as a high priority site, because residential wells were identified east of Williams Street.
- There are nearly 200 facilities on the ARNG's nationwide PA list.

Fort William Henry Harrison PA Findings:

- Jennifer Zorinsky (AECOM) provided an overview of the PA findings. During the PA ten potential sources areas were identified and grouped into three AOIs. Four potential source areas were identified adjacent to FTWHH on VA property. PFAS releases were attributed to Firefighting Units (VA and 1049th) and the Prairie Dog Relocation Project. These locations are identified in the briefing slides, and more detail was provided for each potential source area and aqueous film forming foam (AFFF) use; a primary source of PFAS.
- Historical sampling results indicate PFAS detected in groundwater but below Health Advisory Levels (70 parts per trillion)

Fort William Henry Harrison SI Overview:

- During the SI planning phase, data quality objectives (DQOs) will be established in order to collect the appropriate data to refine the conceptual site model (CSM).
- The primary goal of the SI is to determine the presence/ absence of a release from potential source areas.
- Geologic and hydrogeological data will be used to refine the CSM, specifically with respect to the direction and rate of groundwater flow. The ARNG PFAS program includes consideration of enhanced DQOs that assess PFAS at the boundary and from alternative sources.
- ARNG IED has initiated a future Remedial Investigation (RI) (if required), which will define the nature and extent of potential source areas and focus groundwater sampling at or near potential receptors.
- FTWHH SI Proposed Activities:
 - o Finalize Work Plan and Uniform Federal Policy-Quality Assurance Project Plan.
 - o Install permanent monitoring wells downgradient of potential source areas and at the facility boundary. Continuous soil cores to approximately 60 feet, soil samples collected at surface, mid-point, and above water table at new well locations. Continuous logging of borings will support understanding lithologic controls of preferential pathways.
 - O Sample existing monitoring wells adjacent to or near potential sources areas (BH-02, FH-02, MW-06, MW-07, MW-08, MW-10, OBTMW-01, and OBTMW-02). LTC Johnson (MTARNG-ENV) indicated existing monitoring wells at FTWHH were installed during the Operational Range Assessment completed in 2013 and for monitoring the burial trench, not specifically for PFAS.
 - o Bonnie Packer (ARNG-IED) noted the figures are missing groundwater and surface water flow directions.
 - O Surface soil (0-2 feet) and subsurface soil (2-4 feet) will be collected at the potential source areas.

- o Surface soil (0-2 feet) will be collected in Mt. Defensa Avenue Drainage Ditch and Retaining Pond. One location was removed due to ditch improvements and excavation.
- o Field activities are scheduled for the early spring.

Stakeholder Involvement:

- Document Review and Distribution was determined as follows:
 - o Montana DEQ and VA: one month turnaround time on document review
 - o Montana DEQ requested one print and electronic copy of submitted documents.
 - o VA requested one electronic copy of submitted documents.
- Bonnie Packer (ARNG-IED) discussed the need for stakeholder cooperation to expedite the SI fieldwork due to the presence of private, residential wells immediately downgradient of potential source areas.
- Montana DEQ will communicate directly with MTARNG. MTARNG will be responsible for relaying information to the remaining project stakeholders.

Questions and Open Discussion:

- Bonnie Packer (ARNG-IED) indicated samples collected upgradient of the potential source areas at the VA and at the VA/FTWHH boundary will determine stakeholder contribution to confirmed presence of PFAS.
- Scott Gestring (Montana DEQ) had several questions regarding sample placement and requested the monitoring well (MW) location associated with the Excavated Soil from Mt. Defensa Ave Drainage Ditch be relocated close to the source area.
- Leslie Holz (VA Environmental) indicated that the VA irrigation well was on FTWHH and groundwater from the post was used on the VA property. During the discussion it was noted that the VA irrigation well was directly downgradient of the Burial Trench. Ms. Holz will coordinate with Rebekah Myers (MTARNG-ENV) to gain access to the pump house. The stakeholders agreed that the VA irrigation well should be added as a sampling location during the SI.
- There was an open discussion on adding additional existing MWs on FTWHH, but no additional wells were identified. MTARNG did indicate the OBTMW-02, located near the Burial Trench (AOI 3), has been historically dry.
- MAJ Mike Talia (MTNG-Legal) requested the SI be designed in anticipation of changing regulations in order to avoid repeating the work in the future.
- Stakeholders discussed the potential for an RI and the delineation of potential adjacent source areas on the VA property. MTARNG will coordinate with the VA to gain approval for sampling and well installation (if required).

Visual Reconnaissance:

- Proposed MW and soil sample locations were visually inspected to ensure proper placement to confirm presence or absence of PFAS.
- The proposed MW location at the southwestern boundary was relocated to directly behind the FTWHH sign. LTC Johnson requested that the MW be flush mount.
- One surface soil location near the middle of the Mt. Defensa Avenue Drainage Ditch was removed due to ditch improvements and excavation.
- The proposed air knife location at the southern Prairie Dog Relocation potential source area was removed because the area has been reconfigured and revegetated, and the exact location of the foam injection is unknown.
- The surface/subsurface soil location associated with the Building 1010 was relocated and changed to a new MW location.
- The proposed MW location at the VA boundary was relocated to capture the conveyance of three upgradient over land surface water/snow melt flow patterns.

FINAL

- Four additional surface/subsurface soil locations were added to the Excavated Soil from Mt. Defensa Ave Drainage Ditch potential source area.
- The proposed MW location at the southeastern boundary was relocated closer to the Excavated Soil from Mt. Defensa Ave Drainage Ditch potential source area.
- Proposed sampling of the existing monitoring well OBTMW-02 was removed because MTARNG indicated the well is historically dry and has never been sampled.

The meeting ended at 1430.

Action Items:

- Leslie Holz will coordinate access to the VA irrigation well.
- Steve Gragert (USACE) will follow-up with the USACE reviewers regarding approval of the response to comments on the Draft APP.
- Based on sample location refinement, AECOM will revise the applicable worksheets and figures in the Work Plan and submit to the stakeholders for review and concurrence.

FINAL

Attachment A- TPP1 Sign-In Sheet

SIGN-IN SHEET

Technical Project Planning Meeting 1 Site Inspection, Fort William Henry Harrison, Helena, Montana Thursday 8 November 2018

Name	Organization/Role	Phone	Email
Marc Anderson	USACE Omaha Dist.	(402)995-2285	marcidianderson@usace.army.mil
Bonnie Packer	ARNGIED -PM	703-6077977	bonnie.m. packer, ctræmail, mil
Adel Johnson	MTAAWG - ENU	324-3089 406-431-45-	adel. m. johnson. mil e mail. mil
MIKE TALIA	MTNG-LEGAL	406-324-3325	michael.p.talia.mil@mail.mil
Scott Gestring	DEQ/pm	406 444-6471	sgestring 2 mt. gov
Steve Gragert	USACE - Omaha	402-995-2743	stere p. gragest a usace ampini
Wade M. Juntunen	MTARNG - EUV	406 - 324 - 3088	wade. M. juntanen. ctr@mail. nic)
ROB HALLA	ARNG D	7-3-607-795	WALTER. R. MALLA Z. CIVE MAILOMIL
Virgil Karsen	MARNG. ENV	406 324-3085	Vigil, b. Keiker. Mg @ ma, I. m. 1
Michael Touchette	MTARNG- Public Afforms	(406) 324 - 3009	michael.a.touchetteZ.mil@mail.mil
Jamey Thibodeau	VA - Fire Department	(406) 447-7770	Jamey, Thibolegy QUA, gov
lestie Holz	VA Environmental	406 44 47121	lestie holz j Qva gov
Rebenah Myers	MTAMUG-ENV	406-324-3087	rebehah.1. myers 2. nfg @ mail. ml

FINAL

Attachment B- TPP1 Briefing Slides

Fort William Henry Harrison - Site Inspection Montana Army National Guard

Technical Project Planning (TPP) Meeting 1

Preliminary Assessments and Site Inspections (PA/SI) for Perfluorooctanesulfonic Acid (PFOS) and Perfluorooctanoic Acid (PFOA) Impacted Sites

8 November 2018

Agenda

- Introductions
- Safety Moment
- TPP Meeting Goals
- Army National Guard (ARNG) PA/SI Overview
- ARNG PA Results
- Fort William Henry Harrison (FTWHH) SI Overview
- Stakeholder Involvement
- Questions and Open Discussion
 - Sample Location Refinement

Introductions

- ARNG-Installation and Environment Division (IED), Cleanup Branch
 - Bonnie Packer, Nationwide Project Manager
 - Captain Pam Hess, Toxic Release Program Manager
- United States Army Corps of Engineers (USACE)
 - Steve Gragert, Project Manager
- Montana Army National Guard (MTARNG)
 - LTC Adel Johnson, Environmental Program Manager
 - Wade Juntunen, Project Manager
- Veterans Administration
 - Leslie Holz, GEMS Program Manager Montana VA Health Care System
 - George Setlock, Environmental Program Manager (VHA GEMS Program)
- Montana Department of Environmental Quality (DEQ)
 - Scott Gestring, DSMOA Project Officer, DEQ Cleanup, Protection and Redevelopment Section
 - Katie Morris, Risk Assessor, Cleanup, Protection, & Redevelopment Section
 Waste Management & Remediation Division Missoula Office
- AECOM Technical Services, Inc.
 - Jady Harrington, Project Manager
 - Jennifer Zorinsky, SI Task Manager

Safety Moment Site Safety Procedures

- SI will follow USACE Engineering Manual (EM) 385-1-1 requirements:
 - Accident Prevention Plan addresses all component plans for EM 385-1-1, including Construction Support during drilling operations
 - Site Specific Health and Safety Plan addresses project participants, training, and hazard identification and mitigation
- Planning documents were prepared during SI Work Plan phase

TPP Meeting Goals

TPP1:

- Provide an overview of the ARNG PA/SI Program
- Define objectives for SI data collection
- Encourage stakeholder involvement
- Review project schedule
- Capture action items
- TPP2: Discuss proposed SI approach
- TPP3: Discuss SI findings
- Participants:
 - TPP1 and 2: ARNG, USACE, Montana DEQ
 - TPP3: ARNG, USACE, Montana DEQ, other local stakeholders

ARNG PA/SI Overview

Work Phases

- Follows the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Process
- An interim removal action can be conducted or a No Further Action determination can be made at any phase
- Restoration Advisory Board is typically solicited at Remedial Investigation/Feasibility Study Phase

ARNG PA/SI Overview

- Activities centrally contracted through USACE and managed by ARNG-IED
 - USACE Baltimore manages the contract, with technical project support from Omaha and Sacramento Districts
 - Project support: chemistry, geology, risk screening
- PA ranking (~200 facilities) state ARNG input
 - Likelihood of release
 - Complete pathway to drinking water receptor
- Priority assigned to facilities with highest likelihood of release near drinking water intake
- PA facility-wide; SI areas of interest (AOIs)

ARNG PA/SI Overview

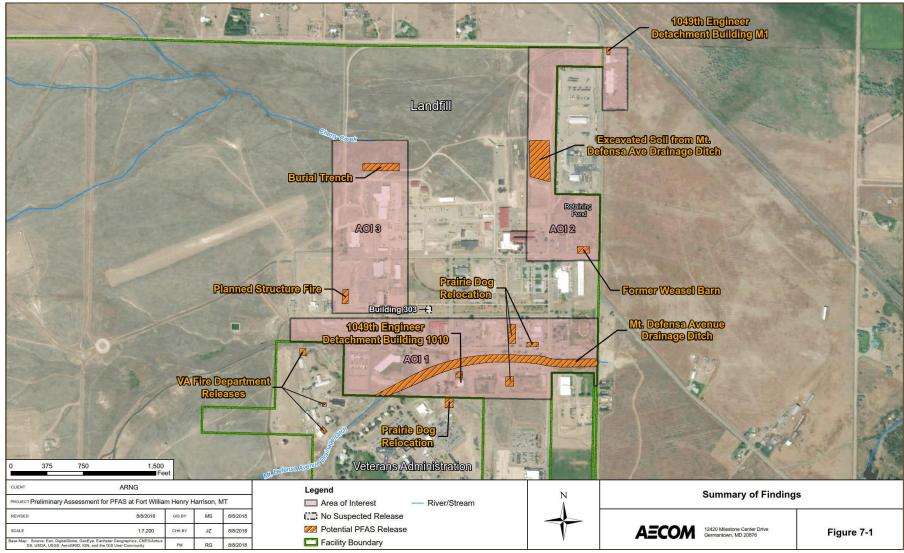
ARNG / MTARNG

- Identify potential per- and polyfluorinated alkyl substances (PFAS) release locations
- Provide facility access and points of contact
- Gather and provide appropriate documents
- Identify/schedule personnel to interview
- Supply final PA to the regulatory agencies

SI Regulatory Involvement

CERCLA SI conducted in conjunction with the appropriate regulatory agency

ARNG PA Results


- Potential Source Areas: 10 identified during the PA
- The potential source areas were grouped into 3 AOIs
- Adjacent Source Areas: 4 identified adjacent to FTWHH
- PFAS releases attributed to Firefighting Units (Veterans Administration and 1049th) and Prairie Dog Relocation Project
- Historical sampling results indicate PFAS detected in groundwater but below Health Advisory Levels (70 parts per trillion)

ARNG PA Results

November 2018

FTWHH SI Overview Data Quality Objectives (DQOs)

Primary SI DQOs

- Confirm the presence/absence of a release
- Gather data for conceptual site model:
 Understanding of Source-Pathway-Receptor relationships required for establishing sampling strategy

Extended SI DQOs

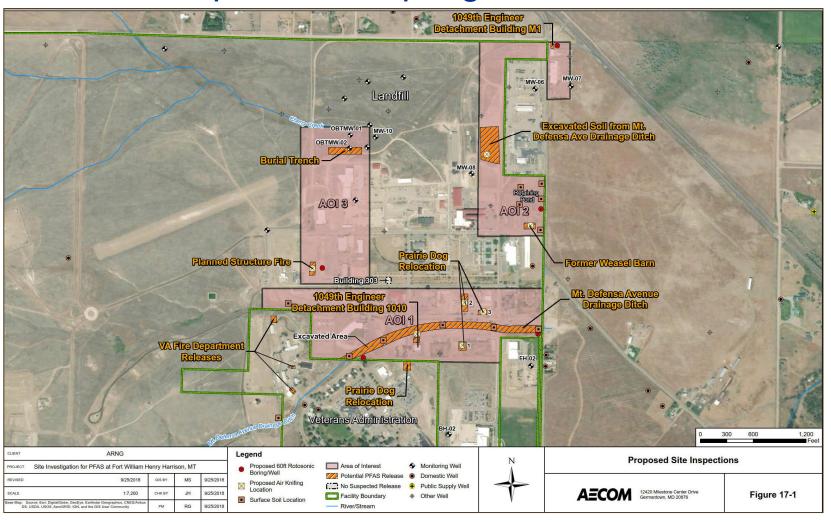
- Determine the presence/absence at facility boundary
- Check for alternate sources, up- or downgradient
- Measure PFAS at/near receptor, if warranted

Planning and Sampling

- Finalize Work Plan and Uniform Federal Policy-Quality Assurance Project Plan (UFP-QAPP)
- Install permanent monitoring wells downgradient of potential source areas and/or at the facility boundary
- Continuous soil cores to target depth (soil samples collected at surface, mid point, above water table for new well locations)
- Sample existing monitoring wells adjacent to potential sources areas (BH-02, FH-02, MW-06, MW-07, MW-08, MW-10, OBTMW-01, and OBTMW-02)
- Collect surface soil (0-2 feet) and subsurface soil (2-4 feet) at the potential source areas
- Collect surface soil (0-2 feet) in Mt. Defensa Avenue Drainage Ditch and Retaining Pond

Analytical Parameters

Perfluorooctanesulfonic acid (PFOS)	Perfluoroheptanoic acid (PFHpA)		
Perfluorohexanesulfonic acid (PFHxS)	Perfluorononanoic acid (PFNA)		
Perfluorooctanoic acid (PFOA)	Perfluorobutanesulfonic acid (PFBS)		
Perfluorobutanoic acid (PFBA)	Perfluoropentanoic acid (PFPA)		
N-ethyl perfluorooctanesulfonamidoacetic	N-methyl perfluorooctanesulfonamidoacetic		
acid (NEtFOSAA)	acid (NMeFOSAA)		
Perfluorodecanoic acid (PFDA)	Perfluorotetradecanoic acid (PFTA)		
Perfluorododecanoic acid (PFDoA)	Perfluorohexanoic acid (PFHxA)		
Perfluorotridecanoic acid (PFTrDA)	Perfluoroundecanoic acid (PFUnA)		
6:2 Fluorotelomer sulfonate (6:2 FTS)	8:2 Fluorotelomer sulfonate (8:2 FTS)		


All data will undergo Level IV data validation

Proposed Sampling Locations

14 November 2018

AOI	Potential Source Area	# of Boring Locations	Target Depth (feet)	Soil Samples	Groundwater Samples
1	Mt. Defensa Avenue Drainage Ditch	2	40-60	6	2
1	Mt. Defensa Avenue Drainage Ditch	Surface	0-2	5	
1	Prairie Dog Relocations (1, 2, 3)	3	0-2 / 2-4	6	
1	Building 1010	1	0-2 / 2-4	6	
2	Cantonment Area Northeast	1	40-60	3	1
2	Cantonment Area Northeast	Surface	0-2	5	
2	Excavated Soil from Mt. Defensa Ave Drainage Ditch	1	0-2 / 2-4	2	0
2	Former Weasel Barn	1	0-2 / 2-4	2	0
2	Building M1	1	40-60	3	1
3	Planned Structure Fire	1	40-60	3	1
3	Planned Structure Fire	1	0-2 / 2-4	2	
All	Existing Monitoring Well Locations				8

15

Stakeholder Involvement

- Use TPPs and open communication to encourage involvement
- Key involvement topics
 - Proposed approaches
 - Document review time for Montana DEQ and other stakeholders
- Schedule:
 - TPP2: November 2018
 - UFP-QAPP: Draft-Final for regulatory review in October 2018
 - Field Investigation: Winter 2018

Questions and Open Discussion

- Coordination
 - Data transfer
 - Report distribution (paper, electronic, portable document format)
 - Stakeholder relations
- Schedule
- PA findings

Sample Location Refinement

- Visual reconnaissance of sample locations
- Confirm placement is accessible and will meet DQOs
- Confirm existing monitoring well locations
- Relocate if required, with ARNG, MTARNG, and Montana DEQ concurrence

Acronyms

- AOI areas of interest
- ARNG Army National Guard
- CERCLA Comprehensive Environmental Response, Compensation, and Liability Act
- DEQ –Department of Environmental Quality
- DQO Data Quality Objective
- EM Engineering Manual
- FTWHH Fort William Henry Harrison
- IED Installation and Environment Division
- MTARNG Montana ARNG

- PA Preliminary Assessment
- PFAS Per- and Polyfluorinated Alkyl Substances
- PFOS Perfluorooctanesulfonic Acid
- PFOA Perfluorooctanoic Acid
- SI Site Inspection
- TPP Technical Project Planning
- UFP-QAPP Uniform Federal Policy-Quality Assurance Project Plan
- USACE United States Army Corps of Engineers

Meeting Minutes

Fort William Henry Harrison – Site Inspection (SI) Technical Project Planning (TPP) – Meeting 3

Preliminary Assessments and Site Inspections (PA/SIs) for Perfluorooctanesulfonic Acid (PFOS) and Perfluorooctanoic Acid (PFOA) Impacted Sites

Contract No. W912DR-12-D-0014, DO W912DR17F0192

Friday, 23 July 2021 1100-1130 EST

Participants Participants			
Name	Affiliation*	Phone	E-Mail
Mark Leeper	ARNG G9	804-516-3529	mark.s.leeper.civ@mail.mil
Briana Niestrom	USACE	206-472-5611	briana.c.niestrom@usace.army.mil
Kristin Addis	USACE	NA	kristin.l.addis@usace.army.mil
LTC Adel Johnson	MTARNG	406-324-3089	adel.m.johnson.mil@mail.mil
Wade Juntunen	MTARNG	406-324-3088	wade.m.juntunen.ctr@mail.mil
Scott Gestring	MDEQ	406-444-6471	sgestring@mt.gov
Jady Harrington	AECOM	402-952-2500	jacquelyn.harrington@aecom.com
Andrew Borden	AECOM	978-905-2405	andrew.borden@aecom.com

*ARNG G9 – Army National Guard; MTARNG – Montana Army National Guard; MDEQ – Montana Department of Environmental Quality; USACE – United States Army Corps of Engineers

Ms. Jady Harrington (AECOM) welcomed participants and reviewed the purpose of the meeting, outlined the agenda, and led a roundtable of introductions for everyone on the Technical Project Planning (TPP) 3 meeting. The meeting purpose was to discuss the Army National Guard (ARNG) Per- and Polyfluoroalkyl Substance (PFAS) Preliminary Assessment (PA)/Site Inspection (SI) program and the results of the SI for PFAS at Fort William Henry Harrison (FTWHH), Helena, Montana.

Briefing slides are included as **Attachment A**. Key points discussed during the presentation are provided below. Additionally, a safety moment was included that discussed safety procedures as we emerge from the pandemic and begin to return to normalcy.

Programmatic Discussion (Slides 5-7):

- The meeting goals for the TPP meetings included in the ARNG PFAS program were presented.
 - The combined TPP 1 and 2 provided an overview of the ARNG PA/SI program, reviewed the PA findings, and discussed the approach of the SI at FTWHH.
 - TPP 3 presented the SI results, resolved comments/concerns to gain concurrence on the SI Report, and discussed future actions at the Site.
- The program follows the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) progress. The CERCLA process was reviewed, and a CERCLA status overview of the site was provided:
 - The Final PA Report for FTWHH was issued in August 2018.
 - The SI fieldwork was completed in October 2020.
 - The Draft Final SI Report was transmitted to the Montana Department of Environmental Quality (MDEQ) in April 2021.

PA Summary of Findings (Slides 8-11):

- A brief overview of the PA findings were presented. During the PA, fourteen potential release areas were identified and grouped into three Areas of Interest (AOI). The identified release areas included:
 - AOI 1
 - Black-tailed Prairie Dog Relocation
 - MTARNG 1049th Engineer Detachment (Building 1010)
 - Mt. Defense Avenue Drainage Ditch
 - MTARNG 1049th Firefighting Training Area 1 and 3
 - o AOI 2

- Excavated soil from Mt. Defense Avenue Drainage Ditch
- Former Weasel Barn
- MTARNG 1049th Engineer Detachment (Building M1)
- MTARNG 1049th Firefighting Training Area 4
- o AOI 3
 - Planned Structure Fire
 - Burial Trench
 - MTARNG 1049th Firefighting Training Area 2
- Potential Adjacent Sources
 - VA Fire Department releases (three locations)
- The potential PFAS release areas were attributed to aqueous file forming foam (AFFF) releases from fire training activities, firetruck washing, emergency response, and pest control.

SI Data Quality Objectives and Screening Levels (Slides 12-13):

- The primary data quality objectives (DQOs) established for the SI included confirming the presence or absence of a release at the potential PFAS release areas, as well as gathering data to refine the CSM.
 - Enhanced DQOs for the SI included determining the presence/absence of PFAS at the facility boundary, checking for alternate sources, and measuring PFAS at/near receptors, if warranted.
- The Department of Defense (DoD) has adopted a policy to retain facilities in the CERCLA process based on risk-based screening levels (SLs) for soil and groundwater. Programmatically, the SLs used were established in a memorandum from the Office of the Secretary of Defense (OSD), dated 15 October 2019, and apply to three compounds: PFOA, PFOS, and perfluorobutane sulfonic acid (PFBS). The SLs were calculated using the United States Environmental Protection Agency (USEPA) Office of Superfund Sites On-Line Calculator, which was updated on 8 April 2021 based on the release of the final Human Health Toxicity Values for PFBS (USEPA, 2021).
 - If the maximum concentration for sampled media were to exceed the SLs established in the OSD memorandum, the AOI would proceed to the next phase under CERCLA, which is the Remedial Investigation (RI).
 - Ms. Harrington clarified that the PFBS SLs were recently updated due to new toxicity values from the USEPA; however, the new PFBS SLs were not incorporated into the FTWHH SI Report because all results were below the new levels, and the updated SLs would not change the outcome of the report.

SI Summary of Approach (Slides 14-16):

- Fieldwork included the installation of permanent monitoring wells using sonic drilling technology/hollow stem auger and groundwater samples.
- Soil samples were collected from each boring location at the surface, above the water table, and at the mid-point between.
- Surface soil samples (hand auger) were collected at each AOI to supplement the soil samples collected from the sonic borings.
- During Mobilization 1, 47 soil samples were collected from 27 locations (soil boring or hand auger),
 15 groundwater samples were collected from six new monitoring wells, eight existing monitoring wells, and one irrigation well.
- During Mobilization 2, 30 soil samples were collected from 27 boring locations (soil boring or hand auger), 15 groundwater samples were collected from five new monitoring wells and ten existing monitoring wells.

SI Summary of Findings (Slides 17-38):

- In the soil samples, PFOA, PFOS, and PFBS were detected at all three AOIs, but the detections were below the SLs. The highest concentrations were found in surface soil samples at AOI 1.
 - The maximum concentration of PFOA in soil was 0.473 J microgram per kilogram (μg/kg), which was collected from 0-2 feet bgs at AOI03-MW01. The maximum detection of PFOS in soil was 39.9 J ug/kg, which was collected from 0-2 feet bgs at AOI1-SS11.

FINAL

- In groundwater, PFOA and PFBS were detected; however, the detections were all below the SLs. PFOS was detected above the SLs and had a maximum concentration of 118 ng/L.
- Potable well samples were collected from five nearby locations in close proximity to the facility boundary; no detections exceeded the 70 ng/L USEPA Health Advisory (HA).
- The revised CSM figure was presented for the AOIs. The sources of the releases are from fire training activities, fire truck washing, prairie dog relocation, and structural fires. Through human activities, precipitation and runoff, or leaching and infiltration, the exposure pathways may be potentially complete for the following:
 - The inhalation of dust by site workers, construction workers, and trespassers or recreational users, and off-facility residents.
 - Ingestion of surface soil by site workers, construction workers, and trespassers or recreational users.
 - o The ingestion of subsurface soil by construction workers.
 - o The potential ingestion of downgradient groundwater by off-facility residents.

Next Steps (Slide 39):

- Based on the results of the SI, FTWHH is recommended for RI.

Open Discussion (Slide 40):

- Ms. Harrington indicated that the MDEQ letter of concurrence (which had been received prior to the TPP 3 meeting) would be included in the TPP Meeting Minutes Appendix in the SI Report.
- LTC Adel Johnson (MTARNG) updated the team on the status of the Rights-of-Entry (ROEs) for potable well sampling. There is 1 in process and two more pending. Approximately six or seven of the 16 sent out have been received. The next step will be to send out letters again.
- Mr. Scott Gestring (MDEQ) indicated he was interested to know what may have caused the increase in concentration at AOI01-MW03 between the two mobilizations. Ms. Harrington stated that the RI will provide additional data for comparison and trends which might shed more light on this increase.
- LTC Johnson informed the team that MDEQ would be collecting surface water samples from Sevenmile Creek, specifically because of the former waste water lagoons that serviced FTWHH and the Veterans Administration Hospital. Mr. Gestring asked if there would be co-located sediment samples collected as well. LTC Johnson thought it was surface water only, but wasn't entirely sure. Ms. Briana Niestrom (USACE) added that the sampling locations are on VA property and therefore are out of the control of USACE for ROE purposes.

FINAL

Intentionally Left Blank

FINAL

Attachment A – TPP 3 Briefing Slides

Fort William Henry Harrison Site Inspection Montana Army National Guard (MTARNG)

Technical Project Planning (TPP) Meeting 3

Preliminary Assessments and Site Inspections (PA/SI) for Perfluorooctanesulfonic Acid (PFOS) and Perfluorooctanoic Acid (PFOA) Impacted Sites

Agenda

- Introductions
- Safety Moment
- TPP Meeting Goals
- Army National Guard (ARNG) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Process Overview
- PA Overview
- SI Results
- Next Steps
- Questions and Open Discussion

Introductions

ARNG G9

- Dave Connolly, per- and polyfluoroalkyl substances (PFAS) Program Manager
- Bonnie Packer, Nationwide Project Manager
- Mark Leeper, ARNG Project Manager

United States Army Corps of Engineers (USACE)

- Tim Peck, Nationwide Program Manager, Baltimore District
- Briana Niestrom, Project Manager, Seattle District

MTARNG

- Lieutenant Colonel Adel Johnson, Environmental Program Chief
- Wade Juntunen, Remediation Project Manager

Montana Department of Environmental Quality (Montana DEQ)

 Scott Gestring, DSMOA Project Officer, Cleanup, Protection, and Redevelopment Section

AECOM Technical Services, Inc.

- Jacquelyn Harrington, SI Senior Lead
- Andrew Borden, SI Task Manager

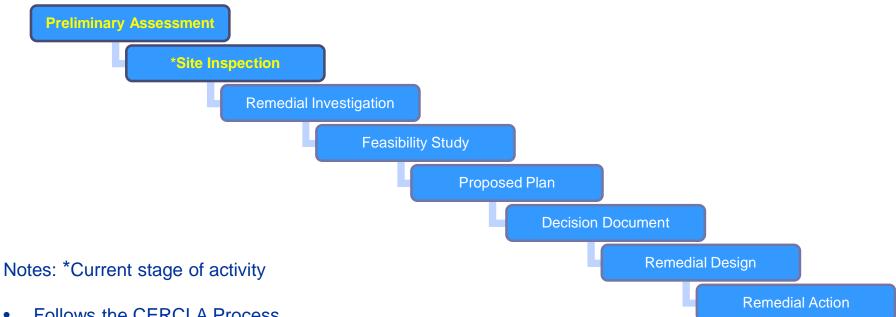
Safety Moment Returning to Normalcy

- Driving long distances/ commuting
- Daily routines
- Summer vacations and sightseeing activities

Meeting Goals

TPP 1/2 Review

- Provided an overview of ARNG PA/SI Program
- Defined objectives for SI data collection
- Encouraged stakeholder involvement
- Reviewed project schedule
- Captured action items
- Discussed proposed SI approach


TPP 3

- ARNG CERCLA program overview
- Revisit the PA findings
- Present SI Results and revise conceptual site model (CSM)
- Resolve comments/concerns and gain concurrence on presentation of findings in Draft Final SI Report
- Discuss future actions at the site

ARNG PA/SI Overview

Work Phases

- Follows the CERCLA Process
- An interim removal action can be conducted or a No Further Action determination can be made at any phase

- PA Report for Fort William Henry Harrison was completed by ARNG in August 2018
- SI fieldwork completed in October 2020
- Draft Final SI Report provided to Montana DEQ on 16 April 2021; results presented today

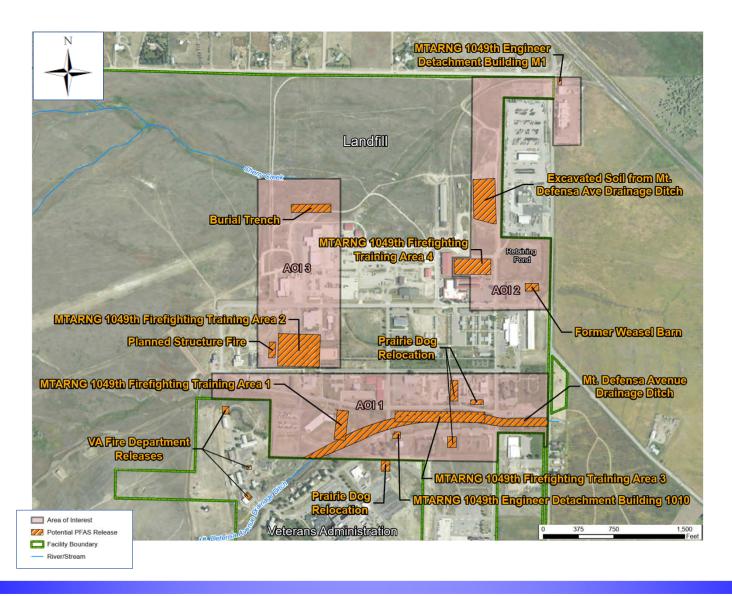
- Potential Release Areas: 14 identified during the PA and SI grouped into 3 areas of Interest (AOIs)
- PFAS releases attributed to aqueous film forming foam (AFFF) releases from fire training activities, firetruck washing, emergency response, and pest control

AOI 1

- Black-Tailed Prairie Dog Relocation
- MTARNG 1049th Engineer Detachment (Building 1010)
- Mt. Defensa Avenue Drainage Ditch
- MTARNG 1049th Firefighting Training Area 1 and 3

• AOI 2

- Excavated Soil from Mt. Defensa Avenue Drainage
 Ditch
- Former Weasel Barn
- MTARNG 1049th Engineer Detachment (Building M1)


9

MTARNG 1049th Firefighting Training Area 4

- AOI 3
 - Planned Fire Structure
 - Burial Trench
 - MTARNG 1049th Firefighting Training Area 2
- Potential Adjacent Sources
 - VA Fire Department releases (three locations)

SI – Data Quality Objectives (DQOs)

Primary SI DQOs

- Confirm the presence / absence of a release at a potential source area
- Gather data for refinement of CSM:
 - Source-Pathway-Receptor relationships

Enhanced SI DQOs

- Determine the presence/absence at the facility boundary
- Check for alternate sources, up- or downgradient

SI – Summary of Approach

- Data compared to Office of the Secretary of Defense (OSD)
 Screening Levels (SLs) for soil and groundwater
 - Memorandum from the OSD dated 15 October 2019
 - OSD SLs adopted for ARNG PFAS program
- Sites exceeding OSD SLs will proceed to the next phase under CERCLA (i.e., Remedial Investigation [RI])
 - Soil from 0-2 feet compared to Residential SL, 2-15 feet compared to Industrial SL, >15 feet not compared to either SL

Analyte	Residential (Soil) (µg/kg) ^a 0-2 feet bgs	Industrial/ Commercial Composite Worker (Soil) (µg/kg) ^a 2-15 feet bgs	Tap Water (Groundwater) (ng/L) ^a
PFOA	130	1,600	40
PFOS	130	1,600	40
PFBS	130,000	1,600,000	40,000

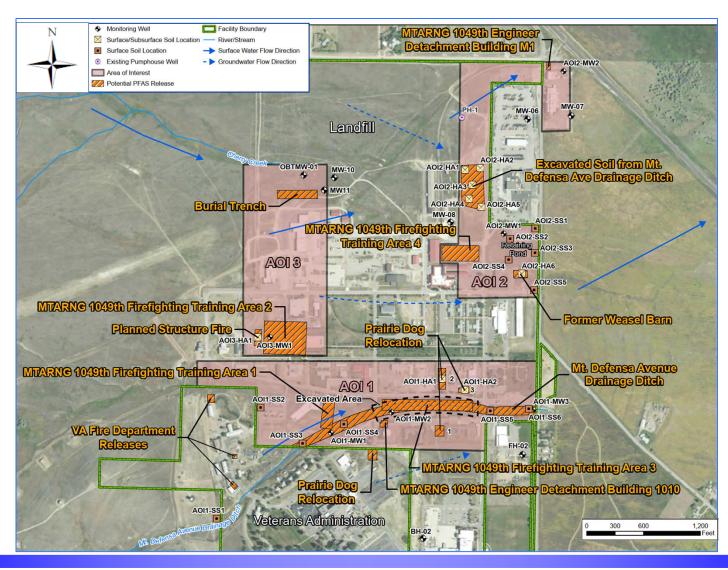
Notes:

a.) Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater and Soil using United States Environmental Protection Agency's (USEPA's) Regional Screening Level Calculator. HQ=0.1. 15 October 2019.

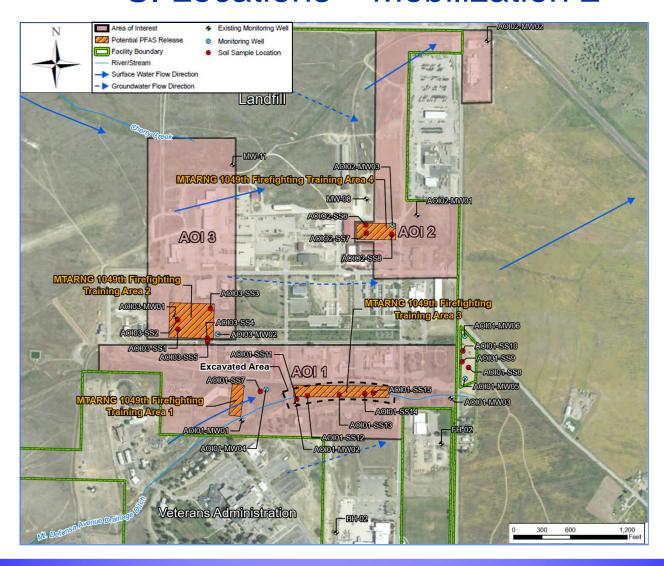
SI – Summary of Approach

Approach

- Soil samples collected from each boring location: surface (0 to 2 feet below ground surface [bgs]), intermediate (15-30 feet bgs), and deep (35-48 feet bgs)
- Permanent monitoring wells installed for groundwater samples (wells screened between 15 to 53 ft bgs)

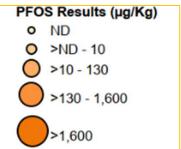

Total Samples

- Mobilization 1
 - 47 soil grab samples from 27 boring locations; and
 - 15 groundwater samples, six from new monitoring well locations, eight from existing monitoring well locations, and one from an irrigation well location.
- Mobilization 2
 - 30 soil grab samples from 27 boring locations; and
 - 15 groundwater samples, five from new monitoring well locations and ten from existing monitoring well locations.


SI – Summary of Approach

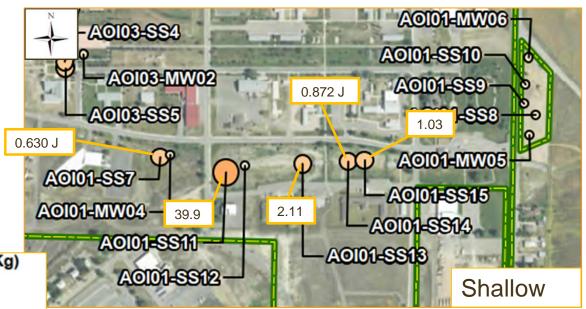
SI Locations - Mobilization 1

SI – Summary of Approach SI Locations – Mobilization 2



- PFAS in soil and groundwater confirmed in AOI 1, AOI 2, AOI 3 and at the facility boundary
- Soil Findings
 - PFOS, PFOA, and perfluorobutanesulfonic acid (PFBS) detected in soil, but at concentrations several orders of magnitude below the SLs.
- Groundwater Findings
 - Detections of PFOA, PFOS, PFBS detected in groundwater at all AOIs. PFOA and PFBS concentrations were below the SLs.
 - PFOS in groundwater >40 nanogram per liter (ng/L) at facility boundary in AOI 1;
 highest detection of PFOS in groundwater was 62.2 ng/L.
 - PFOS in groundwater >40 ng/L at facility boundary in AOI 2; highest detection of PFOS in groundwater was 118 ng/L.

SI – Summary of Findings PFOS in Soil at AOI 1 Mobilization 1



Analyte	Residential (Soil) (μg/kg) 0-2 feet bgs	Industrial Worker (Soil) (µg/kg) ^a 2-15 feet bgs
PFOA	130	1,600
PFOS	130	1.600

SI – Summary of Findings PFOS in Soil at AOI 1 Mobilization 2

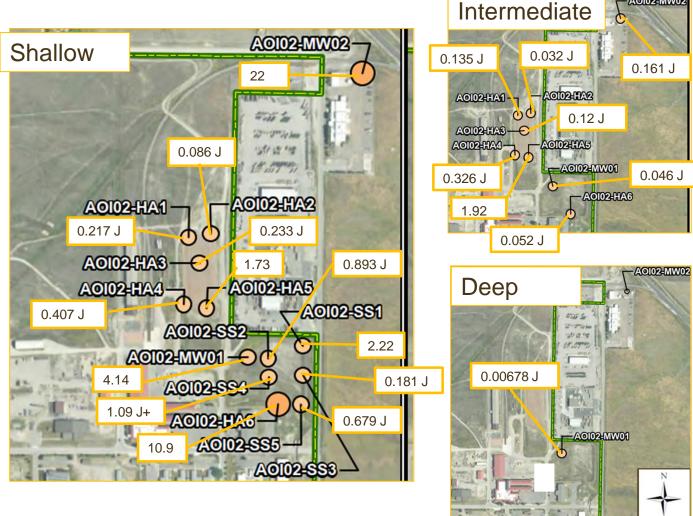
PFOS Results (µg/Kg)

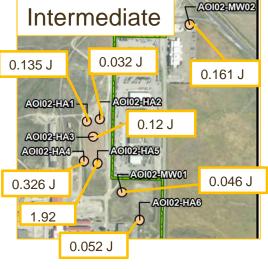
o ND

O >ND - 10

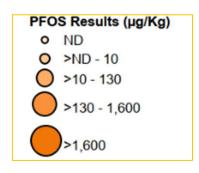
>10 - 130

>130 - 1,600

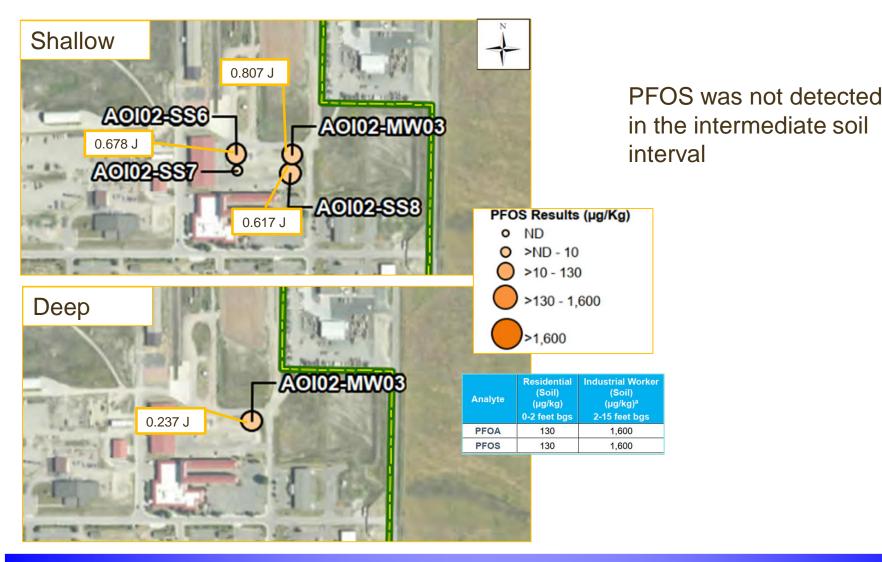

>1,600


PFOS was not detected in the intermediate or deep soil intervals

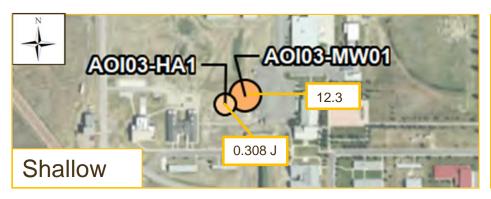
Analyte	Residential (Soil) (Soil) (Soil) (μg/kg) (μg/kg)² (μg/kg)² (2-15 feet bgs)	
PFOA	130	1,600
PFOS	130	1,600

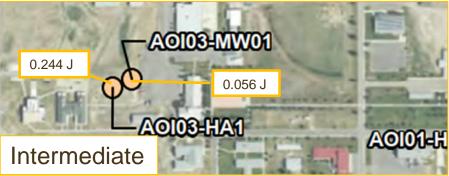


SI – Summary of Findings PFOS in Soil at AOI 2 Mobilization 1

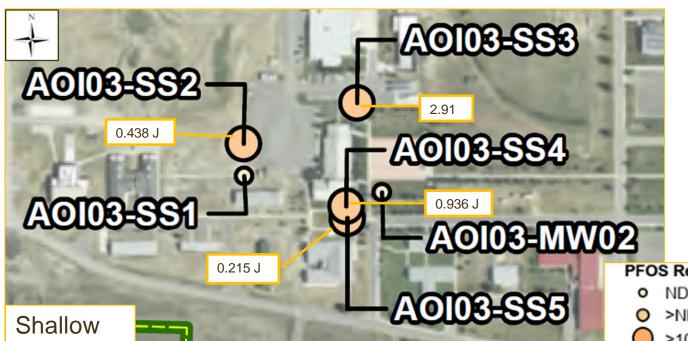


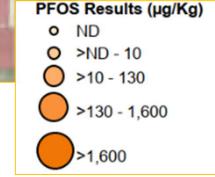
Analyte	Residential (Soil) (μg/kg) 0-2 feet bgs	Industrial Worker (Soil) (μg/kg) ^a 2-15 feet bgs
PFOA	130	1,600
PFOS	130	1,600



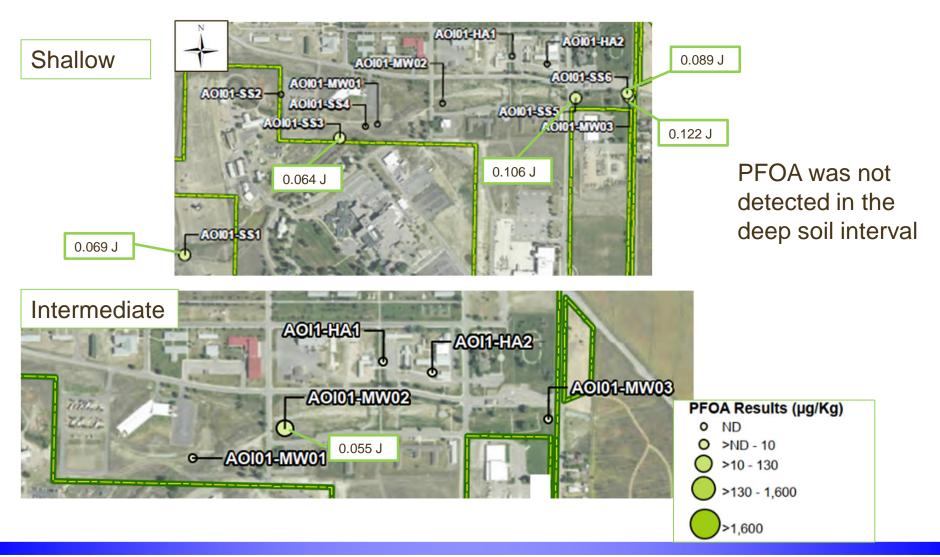

SI – Summary of Findings PFOS in Soil at AOI 2 Mobilization 2

SI – Summary of Findings PFOS in Soil at AOI 3 Mobilization 1

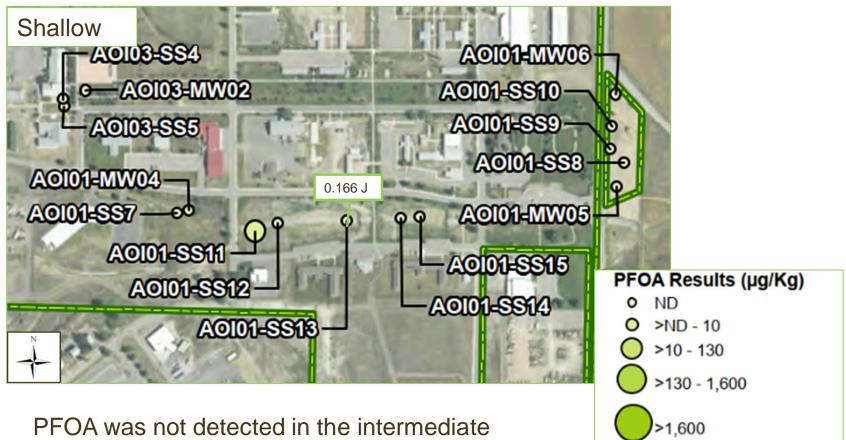




SI – Summary of Findings PFOS in Soil at AOI 3 Mobilization 2


PFOS was not detected in the intermediate or deep soil intervals

Analyte	Residential (Soil) (μg/kg) 0-2 feet bgs	Industrial Worker (Soil) (µg/kg) ^a 2-15 feet bgs
PFOA	130	1,600
PFOS	130	1,600

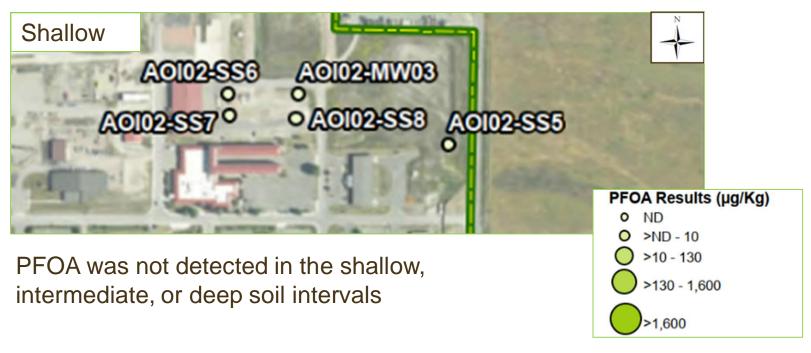


SI – Summary of Findings PFOA in Soil at AOI 1 Mobilization 1

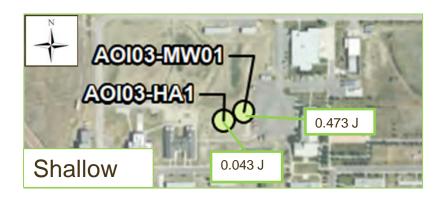
SI – Summary of Findings PFOA in Soil at AOI 1 Mobilization 2

PFOA was not detected in the intermediate or deep soil intervals

Analyte	Residential (Soil) (μg/kg) 0-2 feet bgs	Industrial Worker (Soil) (µg/kg) ^a 2-15 feet bgs
PFOA	130	1,600
PFOS	130	1,600



SI – Summary of Findings PFOA in Soil at AOI 2 Mobilization 1


SI – Summary of Findings PFOA in Soil at AOI 2 Mobilization 2

Analyte	Residential (Soil) (μg/kg) 0-2 feet bgs	Industrial Worker (Soil) (µg/kg) ^a 2-15 feet bgs
PFOA	130	1,600
PFOS	130	1,600

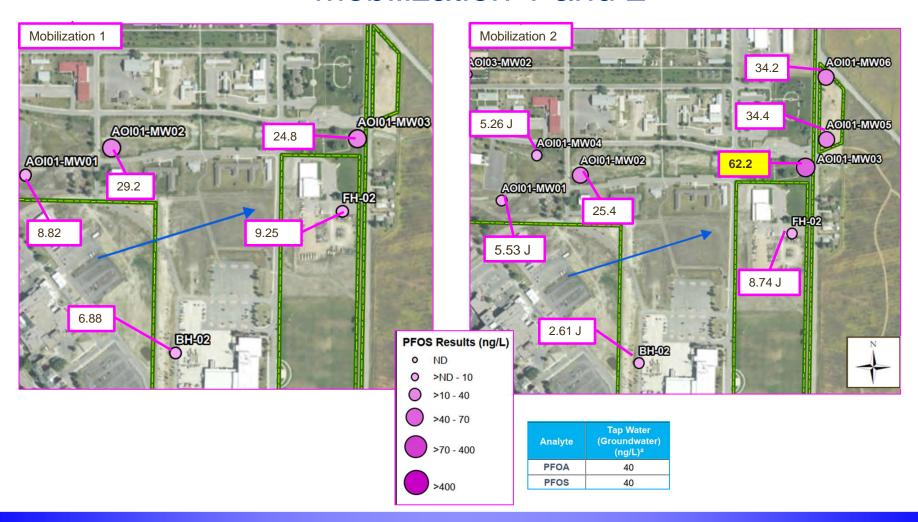
SI – Summary of Findings PFOA in Soil at AOI 3 Mobilization 1

PFOA was not detected in the deep soil interval

SI – Summary of Findings PFOA in Soil at AOI 3 Mobilization 2

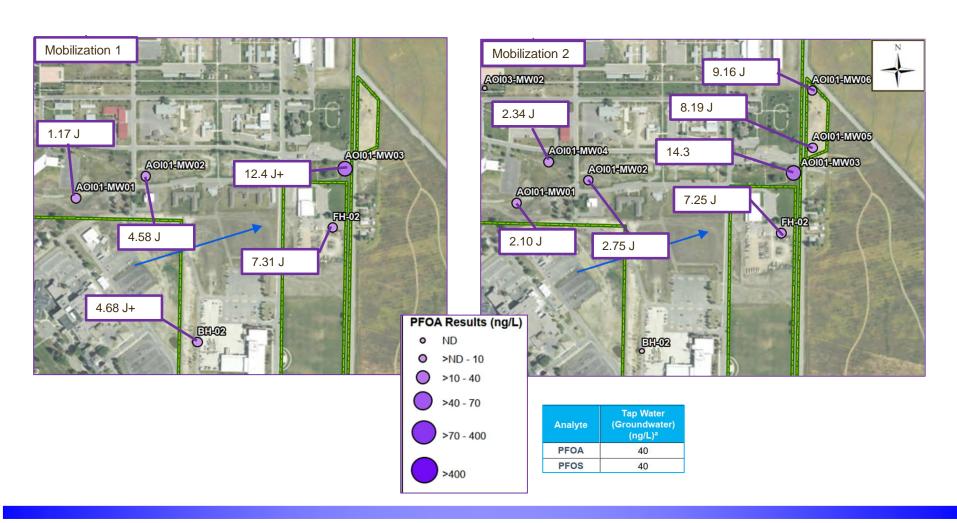
PFOA was not detected in the shallow, intermediate, or deep soil intervals

1,600

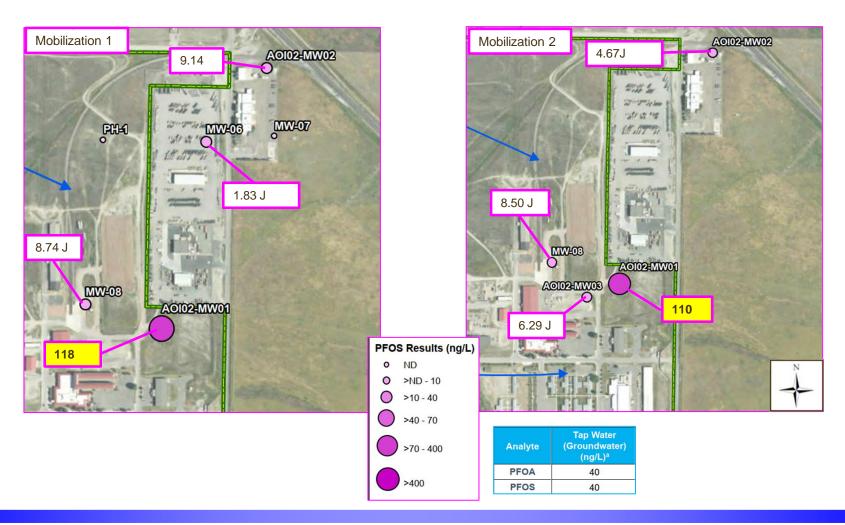

130

29 July 2021

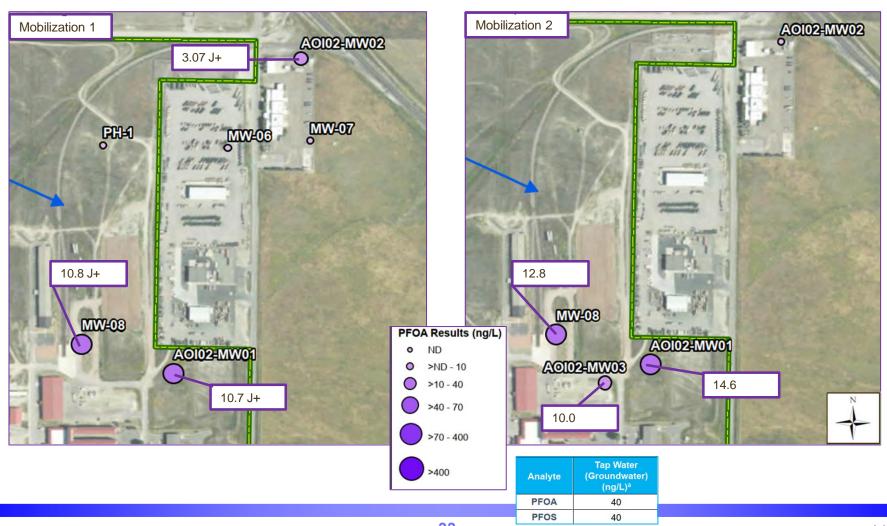
PFOS



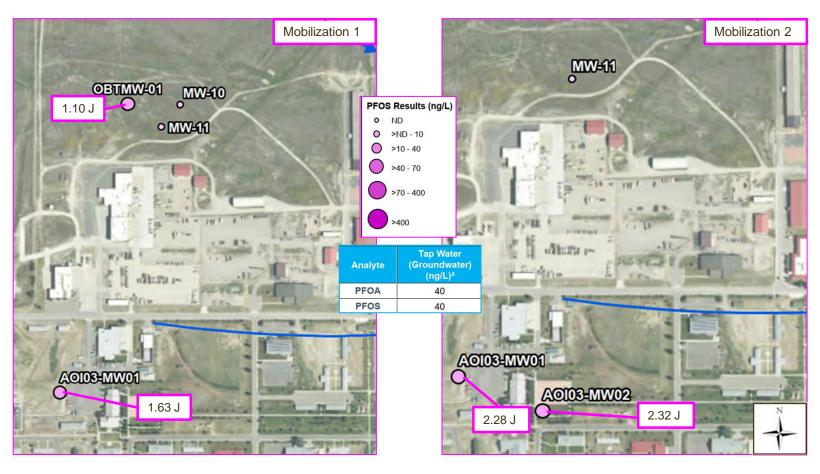
PFOS in Groundwater at AOI 1 Mobilization 1 and 2



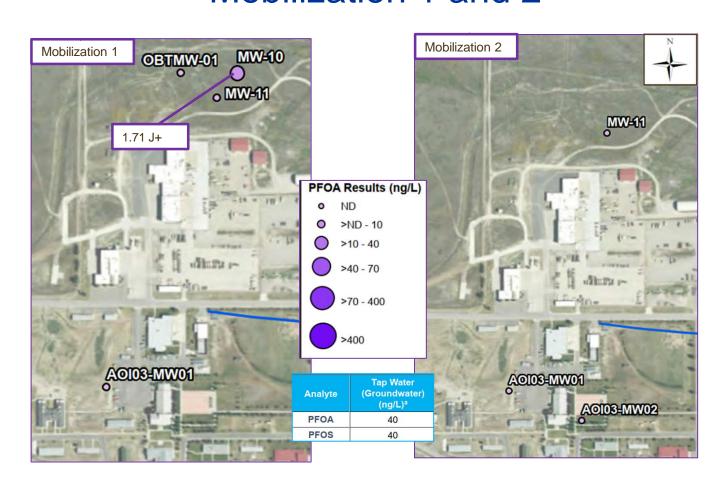
PFOA in Groundwater at AOI 1 Mobilization 1 and 2



PFOS in Groundwater at AOI 2 Mobilization 1 and 2



PFOA in Groundwater at AOI 2 Mobilization 1 and 2



SI – Summary of Findings PFOS in Groundwater at AOI 3 Mobilization 1 and 2

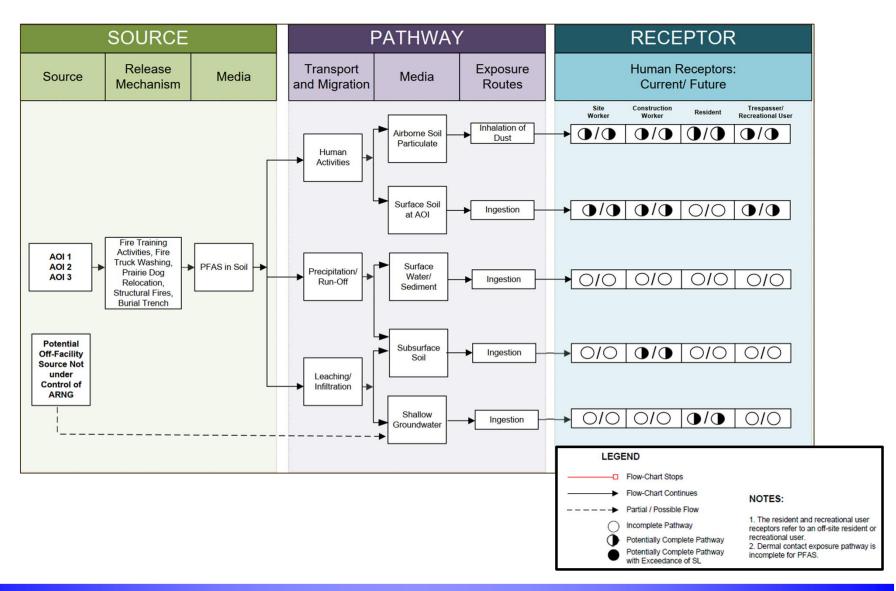
SI – Summary of Findings PFOA in Groundwater at AOI 3 Mobilization 1 and 2

Potable Well Sampling

- Potable well samples collected from five locations in closest proximity to the facility boundary (downgradient of AOI 1).
 - PFOA Detections ranged from 3.75 ng/L (Potable-02) to 16.6 ng/L (Potable-05).
 - PFOS Detections ranged from 3.11 ng/L (Potable-02) to 22.1 ng/L (Potable-05).
 - PFBS Detections ranged from 2.48 ng/L (Potable-04) to 21.2 ng/L (Potable-05).

AOI	Potential PFAS Release Area	Soil – Source Area	Groundwater – Source Area	Groundwater – Facility Boundary
1	Mt. Defensa Avenue Drainage Ditch	0	0	•
1	1049th Engineer Detachment Building 1010	•	•	NA
1	Prairie Dog Relocation (three locations)	0	NA	NA
1	1049th Firefighting Training Area 1	•	0	NA
1	1049th Firefighting Training Area 3	0	NA	NA
1	MacDonald Property	0	0	NA
2	Former Weasel Barn	0	0	0
2	Excavated Soil from Mt. Defensa Ave Drainage Ditch	•	•	•
2	1049th Engineer Detachment Building M1	0	0	•
2	1049th Firefighting Training Area 4	0	0	NA
3	Planned Structure Fire	0	0	NA
3	Burial Trench	NA	0	NA
3	1049th Firefighting Training Area 2	0	0	NA

Legend:


NA = Not applicable (samples not at facility boundary)

= detected; exceedance of the screening levels

D = detected; no exceedance of the screening levels

= not detected

Next Steps

- Finalize SI Report
 - Address comments from Montana DEQ
 - Schedule
- Initiate next step in CERCLA process: RI

Acronyms

- AAAF aqueous film forming foam
- AOI area of interest
- ARNG Army National Guard
- bgs below ground surface
- CERCLA Comprehensive Environmental Response, Compensation, and Liability Act
- CSM conceptual site model
- DEQ Department of Environmental Quality
- DoD US Department of Defense
- DQO data quality objective
- MTARNG Montana Army National Guard
- ng/L nanograms per liter
- OSD Office of the Secretary of Defense
- PA Preliminary Assessment
- PFAS per- and polyfluoroalkyl substances
- PFBS perfluorobutanesulfonic acid
- PFOA perfluorooctanoic acid

- PFOS perfluorooctanesulfonic acid
- RI Remedial Investigation
- SI Site Inspection
- SL screening level
- TPP Technical Project Planning
- US United States
- UFP-QAPP Uniform Federal Policy- Quality Assurance Project Plan
- USACE U.S. Army Corp of Engineers

Site Inspection Report Fort William Henry Harrison, MT

THIS PAGE INTENTIONALLY BLANK

July 21, 2021

Mark Leeper P.G., MBA Remediation Project Manager ARNG Cleanup & Restoration Branch 111 South George Mason Drive Arlington, VA 22204

Subject: Review of the June 2021 Draft Final Site Inspection Report and Response to

Comments Comment Matrix for the Draft Final Site Inspection Report for

Fort William Henry Harrison, Helena, Montana

Dear Mr. Leeper:

On behalf of the Montana Department of Environmental Quality (DEQ) I would like to thank you for providing the June 2021 Draft Final Site Inspection (SI) Report Fort William Henry Harrison, Helena Montana. DEQ received an electronic version of the Draft Final SI Report on June 30, 2021. DEQ personnel have reviewed the Draft Final SI Report and Army National Guard (ANG) contractor's Response to Comments Comment Matrix. ANG's contractor (AECOM) has adequately addressed DEQ's May 17, 2021 comments on the April 2021 Draft Final Site Inspection Report, Fort William Henry Harrison, Helena, MT. DEQ recognizes that the ANG intends on using the screening levels (SLs) for perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluorobutanesulfonic acid (PFBS) set forth in the October 15, 2019 memorandum from the Office of the Secretary of Defense "(Memorandum"). ANG also needs to comply with State groundwater standards during the CERCLA process.

DEQ has promulgated numeric groundwater standards for PFOS and PFOA. These can be found in Circular DEQ-7 Montana Numeric Water Quality Standards (DEQ-7). PFOS and PFOA have an individual standard of 70 nanogram per liter (ng/L) ng/L and the sum of the concentrations of PFOA and PFOS shall not exceed the individual standard.

The Fort Harrison Site Inspection indicated exceedances of ANG SLs and DEQ-7 standards in two onsite groundwater monitoring wells. Groundwater monitoring well AOI-MW3, located in Area of Interest (AOI) 1, reported a PFOS concentration of 62.2 ng/L exceeding the ANG SL of 40 ng/L. AOI-MW3 reported PFAS at 13.5 ng/L. The combined PFOS and PFOA concentration exceeds DEQ-7. Groundwater monitoring well AOI2-MW1, located in AOI1, reported 118 ng/L PFOS exceeding both the DEQ-7 standard and the ANG SL.

Final Site Inspection Report Fort Harrison, Helena, MT July 21, 2021

Please include the Memorandum in an appendix in the Final SI Report. After finalizing the Site Inspection Report, please submit a hard copy and an electronic copy to the DEQ.

If you have any questions, please contact me at (406) 444-6471 or at sgestring@mt.gov.

Sincerely,

Scott Gestring

DSMOA Project Officer

Det Gesting

DEQ Cleanup, Protection and Redevelopment Section

Ec. Mark Leeper, P.G. RPM

Adele Johnson, LTC, MTARNG Environmental Program Manager Wade Juntunen, MTARNG Remediation/UXO Project Manager

Katie Morris, DEQ CPR Section Manager

Scott Gestring, DEQ CPR PM Lee McKenna, DEQ Legal,

Jady Harrington, AECOM

Laurel Riek, Lewis & Clark County R.S.

Kathy Moore, Lewis & Clark County Environmental DA

Peter Schade, Lewis & Clark County

 $\label{lem:condition} G:\hwc\cPR\mbox{\cPRAS-SI\enco} PFAS\allation_Restoration_Prog\FortHarrison-PFAS\allation_PFAS-SI\allation_Restoration_PFAS\allation_PFAS-SI\allation_PF$

Appendix E Boring Logs and Well Construction

Site Inspection Report Fort William Henry Harrison, MT

THIS PAGE INTENTIONALLY BLANK

WELL NUMBER A011-MW-1

AECOM AECOM

TOTAL DEPTH 55 FT BGS PAGE 1 OF 4

PROJECT NUMBER 60552172							SITE NAME AOI 1					
						COMPLETED _2/14/19						
						250						
	ING MET						_ AT TIME OF DRIL	LING				
						CHECKED BY K. ODonnell						
			I				_					
O DEPTH O (ft)	SAMPLE TYPE NUMBER	RECOVERY %	U.S.C.S.	GRAPHIC LOG		MATERIAL DES		ENVIRONMENTAL DATA	874	WELL DIAGRAM		
2.5		78	SP	。 。 。 。 。	2.0	Poorly-Graded Sand with Grave fine grained, 15-25% fine to confide the confidence of the same of the confidence of the same of the confidence of the confide	rel (SP), moist, dark gray, parse angular gravel.	AOI1-SB-0-2		Backfill Top: 0 ft bgs Bottom: 41 f		
		100	GP		7.0	Poorly-Graded Gravel with Sal coarse to very coarse grained, 30-45% fine sand, contains co Changes to blueish gray hue.	gap graded, angular.			Well Casing Type: Sched 40 PVC Diameter: 2 Top: 0 ft bgs Bottom: 55 f		
12.5		95	sw		10.0	Well-Graded Sand with Gravel fine to coarse grained, gap gra very coarse angular gravel.	(SW), dry, light brown, ded, 30-45% medium to					

WELL NUMBER AOI1-MW-1

AECOM AECOM

TOTAL DEPTH 55 FT BGS

PAGE 2 OF 4 CLIENT ARNG, USACE Baltimore District PROJECT NAME Fort William Henry Harrison PROJECT NUMBER 60552172 SITE NAME AOI 1 ENVIRONMENTAL DATA SAMPLE TYPE NUMBER GRAPHIC LOG RECOVERY U.S.C.S. DEPTH (ft) MATERIAL DESCRIPTION WELL DIAGRAM 15.0 Changes to moist, 30-45% coarse to very coarse angular gravel, 10-15% silt. 17.5 ARNG SMART LOG 8:5X11 - CINTAS LAUREL. GPJ - 7/3/19 13:12 - Q.;PROJECTS/ENVGEARS/GEO/ARNG PFAS/900-CAD-GIS/930-OTHER/GINT/FTWHH. GPJ 20.0 Poorly-Graded Gravel with Sand (GP), dry, light brown, coarse to very coarse grained, gap graded, angular, 30-45% fine to coarse sand. GP AOI1-SB1-20-22 22.5 78 4-inch cobble. Well Casing
Type: Schedule
40 PVC Diameter: 2 in Top: 0 ft bgs Bottom: 55 ft bgs 25.0 25.0 Changes to dry to moist. 27.5 30.0

WELL NUMBER A011-MW-1

AECOM AECOM

ARNG SMART LOG 8.5X11 - CINTAS LAUREL GPJ - 7/3/19 13:12 - Q.\PROJECTS\ENV\GEARS\GEO\ARNG PFAS\900-CAD-GIS\930-OTHER\GINTFTWHH.GPJ

TOTAL DEPTH 55 FT BGS

PAGE 3 OF 4 CLIENT ARNG, USACE Baltimore District PROJECT NAME Fort William Henry Harrison PROJECT NUMBER 60552172 SITE NAME AOI 1 ENVIRONMENTAL DATA SAMPLE TYPE NUMBER GRAPHIC LOG RECOVERY DEPTH (ft) U.S.C.S. MATERIAL DESCRIPTION WELL DIAGRAM GP 5-inch cobble. 32.5 20.0 Poorly-Graded Gravel with Sand (GP), dry, light brown, 0 coarse to very coarse grained, gap graded, angular, 30-45% fine to coarse sand. (continued) 5-inch cobble. 35.0 35.0 Well-Graded Sand with Gravel (SW), moist, brown to SW light brown, fine to coarse grained, well graded, 30-45% fine to coarse angular gravel. 37.5 AOI1-SB1-38-40 40.0 100 Clayey Sand with Gravel (SC), dry to moist, light brown, fine grained, gap graded, 15-25% coarse to very coarse SC 40.0 Well Casing Type: Schedule 40 PVC gravel, 30-45% clay. Diameter: 2 in Top: 0 ft bgs Bottom: 55 ft bgs Well Seal Type: Bentonite 42.5 Medium Chip Top: 41 ft bgs Bottom: 43 ft bgs 43.0 Gravelly Silt (ML), dry, light brown, nonplastic, 15-25% ML fine angular gravel. Filter Pack Type: #2 Filter Sand Top: 43 ft bgs Bottom: 55 ft bgs 45.0 45.0 Silty Clay (CL-ML), moist, light yellowish brown, low ML plasticity, 15-25% coarse to very coarse gravel. 47.5 47.5 Well-Graded Sand with Gravel (SW), moist, brown, fine SW to coarse grained, well graded, 15-25% fine angular gravel.

WELL NUMBER A011-MW-1

AECOM AECOM

TOTAL DEPTH 55 FT BGS PAGE 4 OF 4

CLIEN	T ARNO	3, US/	ACE E	Baltimo	ore Dis	strict PROJECT NAME Fort V	PROJECT NAME Fort William Henry Harrison					
PROJ	ECT NUM	IBER	6055	2172		SITE NAME AOI 1	SITE NAME AOI 1					
ОЕРТН (ft)	SAMPLE TYPE NUMBER	RECOVERY %	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	ENVIRONMENTAL DATA	WELL DIAGRAM				
50.0			SW		47.5							
52.5		83	ML		50.0	Silt (ML), wet, white to light gray, low plasticity, <5% fine to medium sand.	AOI-MW1-50-55	Well Casing Type: Schedule 40 PVC Diameter: 2 in Top: 0 ft bgs Bottom: 55 ft bgs Well Screen Type: Schedule 40 PVC Slot Size: 0.01 in Top: 45 ft bgs Bottom: 55 ft bgs				
Notes						Bottom of borehole at 55.0 feet.		Well Screen Type: Schedule				
1. Headspace screening values represent total volatile organic vapors (referenced to an isobutylene standard) measured with a Photo policy Detector (PID) with 10.6 eV lamp. 2. Coordinates and elevation data in NAVD88 for vertical datum and NAD83/91 for horizontal datum in Montana State Plane.												

ARNG SMART LOG 8.5X11 - CINTAS LAUREL.GPJ - 7/3/19 13:12 - Q./PROJECTS/ENV/GEARS/GEO/ARNG PFAS/900-CAD-GIS/930-OTHER/GINT/FTWHH.GPJ

WELL NUMBER A0I1-MW-2 TOTAL DEPTH 40 FT BGS AECOM AECOM PAGE 1 OF 3 CLIENT ARNG, USACE Baltimore District PROJECT NAME Fort William Henry Harrison PROJECT NUMBER 60552172 SITE NAME AOI 1 COMPLETED 2/15/19 EASTING N/A _____ NORTHING N/A DATE STARTED 2/14/19 ____ HOLE SIZE 6 inches DRILLING CONTRACTOR Cascade GROUND ELEVATION N/A DRILLING EQUIPMENT MiniSonic LS250 **GROUND WATER LEVELS:** DRILLING METHOD Roto Sonic AT TIME OF DRILLING ---LOGGED BY C. Beza CHECKED BY K. ODonnell AT END OF DRILLING _---ENVIRONMENTAL DATA SAMPLE TYPE NUMBER GRAPHIC LOG RECOVERY DEPTH (ft) U.S.C.S. MATERIAL DESCRIPTION WELL DIAGRAM 0.0 SP 0.0 Poorly-Graded Sand with Gravel (SP), dry, brown, fine Backfill Top: 0 ft bgs Bottom: 26 ft bgs grained, gap graded, 15-25% fine angular gravel. AOI1-SB2-0-2 SMART LOG 8,5X11 - CINTAS LAUREL GPJ - 7/3/19 13:12 - Q.\PROJECTS\ENV\GEARS\GEO\ARNG PFAS\900-CAD-GIS\930-OTHER\GINT\FTWHH, GPJ 2.5 40 5.0 SM 5.0 Silty Sand with Gravel (SM), dry, brown, fine grained, gap graded, 15-25% silt, 15-25% fine angular gravel, contains carbonate gravel. Well Casing Type: Schedule 7.5 40 PVC 100 Diameter: 2 in Top: 0 ft bgs Bottom: 40 ft bgs <u>10</u>.0 GW 10.0 Well-Graded Gravel with Sand (GW), dry, brown, medium to very coarse grained, angular, well graded, 30-45% fine to coarse sand.

12.5

100

WELL NUMBER A011-MW-2

TOTAL DEPTH 40 FT BGS

AECOM AECOM PAGE 2 OF 3 CLIENT ARNG, USACE Baltimore District PROJECT NAME Fort William Henry Harrison PROJECT NUMBER 60552172 SITE NAME AOI 1 ENVIRONMENTAL DATA SAMPLE TYPE NUMBER GRAPHIC LOG RECOVERY U.S.C.S. DEPTH (ft) MATERIAL DESCRIPTION WELL DIAGRAM 15.0 Clayey Sand with Gravel (SC), moist, brown, fine to SC medium grained, poorly graded, 15-25% clay, 15-25% fine to medium angular gravel. AOI1-SB2-15-17 17.5 ARNG SMART LOG 8.5X11 - CINTAS LAUREL. GP.J - 7/3/19 13:12 - Q.;PROJECTS/ENV/GEARS/GEO/ARNG PFAS/900-CAD-GIS/930-OTHER/GINT/FTWHH. GP.J 20.0 SC 20.0 Clayey Sand (SC), moist, dark gray, fine grained, gap graded, 15-25% clay, 5-10% coarse sand, 5-10% coarse to very coarse gravel, <5% cobble. 22.5 100 Well Casing Type: Schedule 40 PVC Diameter: 2 in Top: 0 ft bgs Bottom: 40 ft bgs 25.0 25.0 SC Changes to brown, well graded, 10-15% medium to coarse sand, 5-10% fine to very coarse gravel. Well Seal Type: Bentonite Medium Chip Top: 26 ft bgs Bottom: 28 ft bgs 27.5 100 Filter Pack Type: #2 Filter Sand Top: 28 ft bgs Bottom: 40 ft bgs AOI1-SB2-28-30 30.0 ML 30.0 Silt with Sand (ML), moist to wet, brown, 15-25% fine sand, 5-10% fine to very coarse gravel.

WELL NUMBER A0I1-MW-2

AECOM AECOM

TOTAL DEPTH 40 FT BGS PAGE 3 OF 3

CLIENT ARNG, USACE Baltimore District PROJECT NAME Fort William Henry Harrison PROJECT NUMBER 60552172 SITE NAME AOI 1 ENVIRONMENTAL DATA SAMPLE TYPE NUMBER GRAPHIC LOG RECOVERY U.S.C.S. DEPTH (ft) MATERIAL DESCRIPTION WELL DIAGRAM Silt with Sand (ML), moist to wet, brown, 15-25% fine ML 32.5 100 sand, 5-10% fine to very coarse gravel. (continued) 35.0 35.0 GW Well-Graded Gravel with Silt and Sand (GW), wet, brown, fine to very coarse grained, angular, well graded, Well Casing 15-25% fine to coarse sand, 5-10% silt. Type: Schedule 40 PVC AOI1-MW2-35-37 Diameter: 2 in ARNG SMART LOG 8.5X11 - CINTAS LAUREL GPJ - 7/3/19 13:12 - Q.\PROJECTS\ENV\GEARS\GEO\ARNG PFAS\900-CAD-GIS\930-OTHER\GINTFTWHH.GPJ Top: 0 ft bgs Bottom: 40 ft bgs 37.5 Well Screen 98 Type: Schedule 40 PVC Slot Size: 0.01 in Top: 30 ft bgs Bottom: 40 ft bgs Well Screen Type: Schedule 40 PVC 40.0 Slot Size: 0.01 in Bottom of borehole at 40.0 feet. Top: 30 ft bgs Bottom: 40 ft bgs 1. Headspace screening values represent total volatile organic vapors (referenced to an isobutylene standard) measured with a Photoionization

Detector (PID) with 10.6 eV lamp.

2. Coordinates and elevation data in NAVD88 for vertical datum and NAD83/91 for horizontal datum in Montana State Plane.

WELL NUMBER A0I1-MW-3 TOTAL DEPTH 50 FT BGS AECOM AECOM PAGE 1 OF 4 CLIENT ARNG, USACE Baltimore District PROJECT NAME Fort William Henry Harrison PROJECT NUMBER 60552172 SITE NAME AOI 1 _____ COMPLETED 2/20/19 EASTING N/A NORTHING N/A DATE STARTED 2/18/19 HOLE SIZE 6 inches DRILLING CONTRACTOR Cascade GROUND ELEVATION N/A DRILLING EQUIPMENT MiniSonic LS250 **GROUND WATER LEVELS:** DRILLING METHOD Roto Sonic AT TIME OF DRILLING ---LOGGED BY C. Beza CHECKED BY K. ODonnell AT END OF DRILLING _---ENVIRONMENTAL DATA SAMPLE TYPE NUMBER GRAPHIC LOG RECOVERY DEPTH (ft) U.S.C.S. MATERIAL DESCRIPTION WELL DIAGRAM 0.0 0.0 No Recovery Backfill Top: 0 ft bgs Bottom: 36 ft bgs AOI1-SS3-0-2 SMART LOG 8,5X11 - CINTAS LAUREL GPJ - 7/3/19 13:12 - Q.\PROJECTS\ENV\GEARS\GEO\ARNG PFAS\900-CAD-GIS\930-OTHER\GINT\FTWHH, GPJ Poorly-Graded Sand with Gravel (SP), moist, dark brown, fine grained, gap graded, 15-25% fine to medium SP 2.0 2.5 83 5.0 SM 5.0 Silty Sand (SM), moist, brown, fine to medium grained, poorly graded, 15-25% silt, 5-10% fine gravel, <5% coarse sand. Well Casing Type: Schedule 7.5 40 PVC 92 Diameter: 2 in Top: 0 ft bgs Bottom: 50 ft bgs <u>10</u>.0 GW 10.0 Sandy Gravel (GW), moist, brown, fine to very coarse grained, subrounded, well graded, 30-45% fine to coarse sand. 12.5 85

WELL NUMBER AOI1-MW-3

AECOM AECOM

TOTAL DEPTH 50 FT BGS

PAGE 2 OF 4 CLIENT ARNG, USACE Baltimore District PROJECT NAME Fort William Henry Harrison PROJECT NUMBER 60552172 SITE NAME AOI 1 ENVIRONMENTAL DATA SAMPLE TYPE NUMBER GRAPHIC LOG RECOVERY U.S.C.S. DEPTH (ft) MATERIAL DESCRIPTION WELL DIAGRAM 15.0 Sandy Gravel (GW), moist, brown, fine to very coarse grained, subrounded, well graded, 30-45% fine to coarse sand. (continued) Changes to subángular. 17.5 AOI1-SB3-18-20 ARNG SMART LOG 8.5X11 - CINTAS LAUREL GPJ - 7/3/19 13:12 - Q.\PROJECTS/ENV/GEARS/GEO/ARNG PFAS/900-CAD-GIS/930-OTHER/GINT/FTWHH, GPJ AOI1-SB3-18-20-DUP 20.0 GW Changes to dry, coarse to very coarse grained, angular to subrounded, poorly graded. 22.5 90 Well Casing Type: Schedule 40 PVC Diameter: 2 in Top: 0 ft bgs Bottom: 50 ft bgs 25.0 Clayey Sand (SC), moist, brown, fine grained, poorly graded, 15-25% clay, 5-10% fine angular to subrounded SC gravel. 27.5 87 30.0 Changes to moist to wet, 5-10% fine to very coarse angular to subrounded gravel.

WELL NUMBER A0I1-MW-3

AECOM AECOM

TOTAL DEPTH 50 FT BGS

PAGE 3 OF 4 CLIENT ARNG, USACE Baltimore District PROJECT NAME Fort William Henry Harrison PROJECT NUMBER 60552172 SITE NAME AOI 1 ENVIRONMENTAL DATA SAMPLE TYPE NUMBER GRAPHIC LOG RECOVERY U.S.C.S. DEPTH (ft) MATERIAL DESCRIPTION WELL DIAGRAM Clayey Sand (SC), moist, brown, fine grained, poorly graded, 15-25% clay, 5-10% fine angular to subrounded SC 32.5 62 gravel. (continued) 35.0 35.0 Changes to fine to medium grained, 5-10% fine angular to subrounded gravel. Well Seal Type: Bentonite Medium Chip Top: 36 ft bgs Bottom: 38 ft bgs ARNG SMART LOG 8.5X11 - CINTAS LAUREL.GPJ - 7/3/19 13:12 - QAPROJECTS/ENVIGEARSIGEONARNG PFASI900-CAD-GISI930-OTHERIGINTI-TWHH. GPJ 37.5 68 Filter Pack Type: #2 Filter Sand Top: 38 ft bgs Bottom: 50 ft bgs AOI1-SB3-38-40 40.0 Changes to wet, fine to coarse grained, well graded, Well Casing 5-10% fine angular gravel. Type: Schedule 40 PVC Diameter: 2 in Top: 0 ft bgs Bottom: 50 ft bgs 42.5 100 Well Screen Type: Schedule 40 PVC 45.0 Slot Size: 0.01 in SW-45.0 Well-Graded Sand with Silt (SW-SM), wet, dark brown, Top: 40 ft bgs SM fine to coarse grained, well graded, 5-10% fine to coarse Bottom: 50 ft bgs angular gravel, 5-10% silt. 47.5 100 AOI1-MW3-47-48

WELL NUMBER AOI1-MW-3

AECOM AECOM

TOTAL DEPTH 50 FT BGS PAGE 4 OF 4

CLIEN	IT ARN	G, US	ACE E	Baltimo	re District PROJECT NAME Fort \	PROJECT NAME Fort William Henry Harrison				
PROJ	ECT NUM	IBER	6055	52172	SITE NAME AOI 1	SITE NAME AOI 1				
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	ENVIRONMENTAL DATA	WELL DIAGRAM			
50.0			SW- SM		45.0					

Bottom of borehole at 50.0 feet.

ARNG SMART LOG 8.5X11 - CINTAS LAUREL.GPJ - 7/3/19 13:12 - Q./PROJECTS/ENVGEARS/GEO/ARNG PFAS/900-CAD-GJS/930-OTHER/GINT/FTWHH.GPJ

Notes:

1. Headspace screening values represent total volatile organic vapors (referenced to an isobutylene standard) measured with a Photoionization Detector (PID) with 10.6 eV lamp.

2. Coordinates and elevation data in NAVD88 for vertical datum and NAD83/91 for horizontal datum in Montana State Plane.

WELL NUMBER A012-MW-1 TOTAL DEPTH 39 FT BGS AECOM AECOM PAGE 1 OF 3 CLIENT ARNG, USACE Baltimore District PROJECT NAME Fort William Henry Harrison PROJECT NUMBER 60552172 SITE NAME AOI 2 **COMPLETED** <u>5/21/19</u> EASTING N/A DATE STARTED 5/21/19 NORTHING N/A **DRILLING CONTRACTOR** Cascade **GROUND ELEVATION** N/A **HOLE SIZE** 6 inches DRILLING EQUIPMENT MiniSonic LS250 **GROUND WATER LEVELS:** DRILLING METHOD Roto Sonic AT TIME OF DRILLING ---LOGGED BY C. Beza CHECKED BY K. ODonnell AT END OF DRILLING _---ENVIRONMENTAL DATA SAMPLE TYPE NUMBER GRAPHIC LOG RECOVERY DEPTH (ft) U.S.C.S. MATERIAL DESCRIPTION WELL DIAGRAM 0.0 Silty Sand (SM), dry to moist, dark brown, fine grained, gap graded, 15-25% silt, 5-10% fine to coarse angular to SM 0.0 Backfill Top: 0 ft bgs Bottom: 24 ft bgs subrounded gravel. AOI2-SB1-0-2 ARNG SMART LOG 8.5X11 - CINTAS LAUREL GPJ - 7/3/19 13:12 - Q.\PROJECTS\ENV\GEARS\GEO\ARNG PFAS\900-CAD-GIS\930-OTHER\GINTFTWHH.GPJ 2.5 5.0 6.0 Changes to light brown. 10-15% fine to coarse angular to SM subrounded gravel. Well Casing Type: Schedule 7.5 40 PVC Diameter: 2 in Top: 0 ft bgs Bottom: 38 ft bgs <u>10</u>.0 AOI2-SB1-9-11 10.0 Changes to brown to light brown, 5-10% medium to very SM coarse subangular to subrounded gravel. 12.5

WELL NUMBER A012-MW-1

AECOM AECOM

TOTAL DEPTH 39 FT BGS

PAGE 2 OF 3 CLIENT ARNG, USACE Baltimore District PROJECT NAME Fort William Henry Harrison PROJECT NUMBER 60552172 SITE NAME AOI 2 ENVIRONMENTAL DATA SAMPLE TYPE NUMBER GRAPHIC LOG RECOVERY DEPTH (ft) U.S.C.S. MATERIAL DESCRIPTION WELL DIAGRAM 15.0 Changes to brown to light brown, 5-10% medium to very SM coarse subangular to subrounded gravel. (continued) 17.5 18.0 Silty, Clayey Sand (SC-SM), moist to wet, light brown, SCfine grained, gap graded, 10-15% clay, 5-10% silt, 5-10% SM medium to very coarse subangular to subrounded gravel. AOI2-SB1-18-20 ARNG SMART LOG 8.5X11 - CINTAS LAUREL GPJ - 7/3/19 13:12 - Q.\PROJECTS/ENV/GEARS/GEO/ARNG PFAS/900-CAD-GIS/930-OTHER/GINT/FTWHH, GPJ 20.0 SC 19.7 Clayey Sand (SC), wet, dark brown, fine to coarse grained, well graded, 15-25% clay, gradational lower boundary. 22.5 Well Casing Type: Schedule 40 PVC Diameter: 2 in Top: 0 ft bgs Bottom: 38 ft bgs 25.0 Annular Seal 100 Type: Portland Cement Top: 24 ft bgs Bottom: 26 ft bgs 26.0 Well-Graded Sand with Gravel (SW), wet, gray to light gray, fine to coarse grained, gap graded, 15-25% coarse Filter Pack Type: #2 Filter to very coarse angular to subrounded gravel. Sand Top: 26 ft bgs Bottom: 39 ft bgs 27.5 AOI2-MW1-28-30 30.0 Clayey Sand (SC), wet, dark brown, fine to coarse grained, well graded, 15-25% clay, 10-15% fine to coarse SC angular gravel.

WELL NUMBER AOI2-MW-1

AECOM AECOM

TOTAL DEPTH 39 FT BGS PAGE 3 OF 3

CLIENT ARNG, USACE Baitimore District PROJECT NAME For William Henry Harrison												
PROJ	ECT NUM	MBER	605	52172	SITE NAME AOI 2	SITE NAME _AOI 2						
ОЕРТН (#)	SAMPLE TYPE NUMBER	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	MATERIAL DESCRIPTION WELL DATA						
32.5 		100	SC		30.0 Clayey Sand (SC), wet, dark brown, fine to coarse grained, well graded, 15-25% clay, 10-15% fine to coarse angular gravel. (continued)		Well Casing Type: Schedule 40 PVC Diameter: 2 in Top: 0 ft bgs Bottom: 38 ft bgs Well Screen Type: Schedule 40 PVC Slot Size: 0.01 in Top: 28 ft bgs Bottom: 38 ft bgs Well Screen Type: Schedule 40 PVC Slot Size: 0.01 in Top: 28 ft bgs Bottom: 38 ft bgs Well Screen Type: Schedule 40 PVC Slot Size: 0.01 in					
Notes					Bottom of borehole at 39.0 feet.		Top: 28 ft bgs Bottom: 38 ft bgs					
		screer	ning va	alues r	epresent total volatile organic vapors (referenced to an isobutylene	standard) measured w	with a Photoionization					

Detector (PID) with 10.6 eV lamp.

4. Coordinates and elevation data in NAVD88 for vertical datum and NAD83/91 for horizontal datum in Montana State Plane.

ARNG SMART LOG 8.5X11 - CINTAS LAUREL.GPJ - 7/3/19 13:12 - Q./PROJECTS/ENVGEARS/GEO/ARNG PFAS/900-CAD-GJS/930-OTHER/GINT/FTWHH.GPJ

WELL NUMBER A012-MW-2

AECOM AECOM

TOTAL DEPTH 30 FT BGS PAGE 1 OF 2

- 1		LIENT ARNG, USACE Baltimore District ROJECT NUMBER 60552172								ROJECT NAME Fort W	/illiam Henry Ha		
- 1										ASTING N/A			
											HOLE SIZE N/A		
	DRILLING EQUIPMENT MiniSonic LS250									 ROUND WATER LEVEL			
		ING MET											
		ED BY _					CHECKED BY	K. ODonnell		AT END OF DRILLI			
Ľ			O. DC.				OHEORED D1	N. ODOIIICII		AT END OF BRILES			
	O.O DEPTH	SAMPLE TYPE NUMBER	RECOVERY %	U.S.C.S.	GRAPHIC LOG			MATERIAL D	DESCRI	IPTION	ENVIRONMENTAL DATA		WELL DIAGRAM
-				SC		0.0	Clayey Sand gap graded g angular grav	graded, 15-25%	C), dry, clay, 1	, black, fine grained, 15-25% fine to coarse	AOI2-SB2-0-2 AOI2-SB2-0-2-DU	JP	Backfill Top: 0 ft bgs Bottom: 16 ft bgs
NG SMART LOG 8.5X11 - CINTAS LAUREL. GPJ - 7/3/19 13:12 - Q:\PROJECTS\ENVGEA	2.5 5.0 7.5		100	SM		5.0 5.1	graded, 15-2 gravel. Changes to subrounded 12-inch layer	25% silt, 10-15%	% fine to	n, fine grained, gap o coarse angular	AOI2-SB2-8-10		Well Casing Type: Schedule 40 PVC Diameter: 2 in Top: 0 ft bgs Bottom: 30 ft bgs

WELL NUMBER A012-MW-2

AECOM AECOM

TOTAL DEPTH 30 FT BGS PAGE 2 OF 2

CLIENT ARNG, USACE Baltimore District PROJECT NAME Fort William Henry Harrison PROJECT NUMBER 60552172 SITE NAME AOI 2 ENVIRONMENTAL DATA SAMPLE TYPE NUMBER GRAPHIC LOG RECOVERY DEPTH (ft) U.S.C.S. MATERIAL DESCRIPTION WELL DIAGRAM 15.0 100 Poorly-Graded Sand with Silt and Gravel (SP-SM), moist, SPbrown, fine grained, gap graded, 15-25% fine to very coarse subrounded gravel, 5-10% silt. SM Annular Seal Type: Portland Cement Top: 16 ft bgs Bottom: 18 ft bgs 17.5 Filter Pack Type: #2 Filter Sand 18.0 Changes to wet. Top: 18 ft bgs Bottom: 30 ft bgs AOI2-SB2-18-20 ARNG SMART LOG 8.5X11 - CINTAS LAUREL GPJ - 7/3/19 13:12 - Q.\PROJECTS/ENV/GEARS/GEO/ARNG PFAS/900-CAD-GIS/930-OTHER/GINT/FTWHH, GPJ 20.0 SC 20.0 Clayey Sand with Gravel (SC), wet, dark brown, fine to medium grained, gap graded, 15-25% clay, 15-25% medium to very coarse subrounded gravel. Well Casing Type: Schedule 40 PVC 22.5 Diameter: 2 in Top: 0 ft bgs Bottom: 30 ft bgs Well Screen Type: Schedule 40 PVC 25.0 100 AOI2-MW2-24-26 SC 25.0 Changes to reddish brown. Slot Size: 0.01 in Top: 20 ft bgs Bottom: 30 ft bgs 27.0 SP Poorly-Graded Sand with Gravel (SP), wet, dark brown, 27.5 fine to medium grained, gap graded, 15-25% fine to coarse gravel. 30.0 Bottom of borehole at 30.0 feet.

3. Headspace screening values represent total volatile organic vapors (referenced to an isobutylene standard) measured with a Photoionization Detector (PID) with 10.6 eV lamp.

^{4.} Coordinates and elevation data in NAVD88 for vertical datum and NAD83/91 for horizontal datum in Montana State Plane.

WELL NUMBER A013-MW-1 TOTAL DEPTH 58 FT BGS AECOM AECOM PAGE 1 OF 4 CLIENT ARNG, USACE Baltimore District PROJECT NAME Fort William Henry Harrison PROJECT NUMBER 60552172 SITE NAME AOI 3 **COMPLETED** 5/22/19 DATE STARTED 5/21/19 EASTING N/A NORTHING N/A **DRILLING CONTRACTOR** Cascade **GROUND ELEVATION** N/A **HOLE SIZE** 6 inches DRILLING EQUIPMENT MiniSonic LS250 **GROUND WATER LEVELS:** DRILLING METHOD Roto Sonic AT TIME OF DRILLING ---LOGGED BY C. Beza CHECKED BY K. ODonnell AT END OF DRILLING _---ENVIRONMENTAL DATA SAMPLE TYPE NUMBER GRAPHIC LOG RECOVERY DEPTH (ft) U.S.C.S. MATERIAL DESCRIPTION WELL DIAGRAM 0.0 Silty Sand (SM), dry, brown, fine grained, poorly graded, 15-25% silt, 5-10% fine to coarse angular gravel. SM 0.0 Backfill Top: 0 ft bgs Bottom: 44 ft bgs AOI3-SB1-0-2 ARNG SMART LOG 8.5X11 - CINTAS LAUREL GPJ - 7/3/19 13:12 - Q.\PROJECTS\ENV\GEARS\GEO\ARNG PFAS\900-CAD-GIS\930-OTHER\GINTFTWHH.GPJ 2.5 5.0 50 Well Casing Type: Schedule 7.5 40 PVC Diameter: 2 in Top: 0 ft bgs Bottom: 58 ft bgs <u>10</u>.0 10.0 Changes to fine to medium grained, 5-10% fine to very coarse subangular to subrounded gravel. 12.5

WELL NUMBER A013-MW-1

AECOM AECOM

TOTAL DEPTH 58 FT BGS

PAGE 2 OF 4 CLIENT ARNG, USACE Baltimore District PROJECT NAME Fort William Henry Harrison PROJECT NUMBER 60552172 SITE NAME AOI 3 ENVIRONMENTAL DATA SAMPLE TYPE NUMBER GRAPHIC LOG RECOVERY U.S.C.S. MATERIAL DESCRIPTION WELL DIAGRAM 15.0 100 SM Silty Sand (SM), dry, brown, fine grained, poorly graded, 15-25% silt, 5-10% fine to coarse angular gravel. (continued) 17.5 AOI3-SB1-18-20 ARNG SMART LOG 8.5X11 - CINTAS LAUREL GPJ - 7/3/19 13:12 - Q.\PROJECTS/ENV/GEARS/GEO/ARNG PFAS/900-CAD-GIS/930-OTHER/GINT/FTWHH, GPJ 20.0 20.0 Poorly-Graded Sand with Silty Clay (SP-SC), dry, brown, fine to medium grained, 10-15% clay, 5-10% silt, 5-10% fine to very coarse subangular to subrounded gravel. 22.5 Well Casing SM 23.0 Silty Sand (SM), dry, brown, fine to medium grained, Type: Schedule 40 PVC poorly graded, 15-25% silt, 5-10% fine to coarse angular Diameter: 2 in Top: 0 ft bgs Bottom: 58 ft bgs 25.0 100 SP. 26.0 Poorly-Graded Sand with Silty Clay and Gravel (SP-SC), SC dry to moist, brown, fine to medium grained, 27.5 Silty Sand with Gravel (SM), dry to moist, dark brown, fine to coarse grained, well graded, 15-25% silt, 15-25% SM 29.0 fine to very coarse subangular to subrounded gravel. 30.0 31.0 SM Changes to reddish brown.

WELL NUMBER A013-MW-1

TOTAL DEPTH 58 FT BGS AECOM AECOM PAGE 3 OF 4 CLIENT ARNG, USACE Baltimore District PROJECT NAME Fort William Henry Harrison PROJECT NUMBER 60552172 SITE NAME AOI 3 ENVIRONMENTAL DATA SAMPLE TYPE NUMBER GRAPHIC LOG RECOVERY U.S.C.S. DEPTH (ft) MATERIAL DESCRIPTION WELL DIAGRAM SM 31.0 Changes to reddish brown. (continued) 32.5 SM 34.0 Changes to brown. 35.0 100 ARNG SMART LOG 8.5X11 - CINTAS LAUREL. GP.J - 7/3/19 13:12 - Q.;PROJECTS/ENV/GEARS/GEO/ARNG PFAS/900-CAD-GIS/930-OTHER/GINT/FTWHH. GP.J 37.5 39.5 Silty Clay (CL-ML), moist to wet, yellowish brown, <5% CL-40.0 ML fine sand. Well Casing Type: Schedule 40 PVC Diameter: 2 in AOI3-SB1-40-42 Top: 0 ft bgs Bottom: 58 ft bgs 42.5 Annular Seal Type: Portland 43.5 Elastic Silt (MH), moist to wet, white, <5% fine sand. MH Cement Top: 44 ft bgs Bottom: 46 ft bgs 45.0 100 Filter Pack Type: #2 Filter Sand Top: 46 ft bgs Bottom: 58 ft bgs 47.5 AOI3-MW1-47-48

WELL NUMBER A013-MW-1

AECOM AECOM

TOTAL DEPTH 58 FT BGS PAGE 4 OF 4

CLIE	NT ARN	RECO U.S GRA		ore District	PROJECT NAME Fort W	/illiam Henry Harrison		
PRO	JECT NUN	IBER	6055	2172		SITE NAME AOI 3		
DEPTH (ft)	SAMPLE TYPE NUMBER		U.S.C.S.	GRAPHIC LOG	MATERIAL DESC	CRIPTION	ENVIRONMENTAL DATA	WELL DIAGRAM
. Dete	s: eadspace s	screen	ing va	/ lamp	(continued) 50.0 Changes to wet. Bottom of borehole	e at 58.0 feet. ferenced to an isobutylene	standard) measured w	

WELL NUMBER AOI01-MW4

AECOM AECOM

TOTAL DEPTH 38 FT BGS PAGE 1 OF 2

			ACE Baltimo		trict				PROJECT NAME	Fort W	illiam Henry Harr	ison		
			60552172						SITE NAME AO					
						-	10/10/20		EASTING 1315					375496.685
									GROUND ELEVA			HOLE	SIZE _	4.25 inches
			NT CME 8						GROUND WATE			00 4	15 00 6	
		-	Hollow Ste			OVED BY	J. Hollingsw	·orth			NG 30.00 ft / E			
LOGG		J. Dez	а 		CHE	SVED BI	J. Hollingsw	OILII	- AT TIME C	JF SAIVIFI		Elev 38	940.07 1	ι
O DEPTH	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG		MATER	RIAL DES	SCRIPTION		ENVIRONMENTAL DATA		V	VELL DIAGRAM
				GW- GM		A	VELL-GRADE IND SAND, di IOT SAMPLE	ry, pale t	VEL WITH SILT brown.	3975.6	AOI01-04-SB-00-0	02		Annular Seal Type: Portland Cement Top: 0 ft bgs Bottom: 3 ft bgs Annular Seal
5	⊠ ss	100	50/5"	SM		fi m — — — —	SILTY SAND, ne-grained wi nedium, angul IOT SAMPLE	th 15-25 lar grave	e brown (10YR 6/3 5% silt and 10-15% al.), 3970.6 6 3969.1				Type: Portland Cement Top: 3 ft bgs Bottom: 25 ft bgs
 10 	ss	100	19-30-42 (72)	SW		y∘ m 115 7 9	nedium-graine	n (10YR ed with n up to 1 i	D, dry, light R 6/4), fine- to nedium, angular inch in diameter.	3965.6 _ / 3964.1				Well Casing Type: Schedule 40 PVC Diameter: 2 in Top: 0 ft bgs Bottom: 28 ft bgs
15 	ss	100	9-18-26 (44)	-		si m 16.5 7 9 _d	lightly moist, l	brown (1 ed with 1 in size f	D WITH GRAVEL, 10YR 5/3), fine- to 15-25% subangular from 1/4 to 1 inch i	r	AOI01-04-SB-15-1	17		Bottom: 20 it ago
20	ss	100	10-25-45 (70)			si ci 21.5 7 9 _a	lightly moist, l	brown (1 I with 30 up to 2 i unts of o	D WITH GRAVEL, 10YR 5/3), fine- to 0-35% subangular inches in diameter clay.					Filter Pack Type: #00 Filter

WELL NUMBER A0I01-MW4

AECOM AECOM

TOTAL DEPTH 38 FT BGS PAGE 2 OF 2

			60552172	ile Disi	IIICI	SITE NAME AOI 1	villiani i leni y Hamson	
1.1.50			00002172		1	OHE MAINE AOTT	T .	_
HT(#)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	ENVIRONMENTAL DATA	WELL DIAGRAM
	$\sqrt{}$	405	10-41-49			25.0 Same as above. 3950.	<u> </u>	Sand Top: 25 ft bgs
-	X ss	100	(90)			25.8 Changes to dry, very pale brown (10YR 3949.		Bottom: 38 ft bgs
	V V			1	• • • •	26.5 \ \ \frac{7/3}{20.5} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	╗	Well Casing
						NOT ORIVII LLD.		Type: Schedule 40
-								Diameter: 2 in
								Top: 0 ft bgs Bottom: 28 ft bgs
30						∇		Dollom: 20 it bgs
_ 50	\square		9-12-21	sc		30.0 CLAYEY SAND, very moist, yellowish 3945.	6	
-	X ss	100	(33)			brown (10YR 5/4), fine- to medium-grained with >15% clay.	AOI01-04-SB-30-32	
	V V			-	<u> </u>	31.5 NOT SAMPLED. 3944.	Ī	
								Well Screen Type: Schedule 40
-								PVC Slot Size: 0.01 in
L _								
35								Bottom: 38 ft bgs
E 30	\square		F 40 00	-		35.0 Same as above. Changes to saturated 3940.	5	
<u></u> }	X ss	100	5-10-23 (33)			wet.	AOI01-MW04-GW	
# H H H H H H H H H H H H H H H H H H H	V V				1.7.7.7.	36.5 NOT SAMPLED. 3939.		
<u> </u>								
5								

Bottom of borehole at 38.0 feet.

Notes:

1. Headspace screening values represent total volatile organic vapors (referenced to an isobutylene standard) measured with a Photoionization Detector (PID) with 10.6 eV lamp.

Coordinates and elevation data in NAVD88 for vertical datum and NAD83/91 for horizontal datum in Montana State Plane.
 First 5 feet cleared with air knife.

ARNG SMART LOG 8:5X11_V2 - - 10/30/20 16:19 - C:\USERS\JACK.HOLLINGSWORTH\DOCUMENTS\GINT\ARN

WELL NUMBER A0I01-MW5

AECOM AECOM

TOTAL DEPTH 45 FT BGS PAGE 1 OF 2

CLIEN	IT ARNO	S, USA	ACE Baltimo	re Dis	trict		PROJECT NAME Fort	William Henry Har	rison	
			60552172				SITE NAME AOI 1			
DATE	STARTE	D 10	/8/20		COM	IPLETED 10/9/20	EASTING _1317100.063	}	NORTHING	875592.893
DRILL	ING CON	TRAC	TOR Case	cade			GROUND ELEVATION	3947.99 ft	HOLE SIZE	4.25 inches
DRILL	ING EQU	IPMEN	NT CME 8	5			GROUND WATER LEVE	LS:		
DRILL	ING MET	HOD	Hollow Ste	m Aug	jer		$\overline{igspace}$ at time of dril	LING 37.00 ft / E	Elev 3910.99	ft
LOGG	ED BY _	C. Bez	a		CHE	CKED BY J. Hollingsworth	$oldsymbol{oldsymbol{arphi}}$ AT TIME OF SAM	PLING 34.21 ft /	Elev 3913.78	3 ft
O DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DE		ENVIRONMENTAL		WELL DIAGRAM
				GW		0.0 WELL-GRADED GRA dry, pale, medium to o 35-45% very fine-grain 2.0 NOT SAMPLED.	oarse, angular with	AOI01-05-SB-00	-02	Annular Seal Type: Portland Cement Top: 0 ft bgs Bottom: 3 ft bgs Annular Seal Type: Portland
5	ss	39	8-9-11 (20)	sw		5.0 WELL-GRADED SAN dry, gray to tan, fine-g subrounded to angula 6.5 NOT SAMPLED.	rained with 30-50%			Cement Top: 3 ft bgs Bottom: 33 ft bgs
10	ss	90	25-50/4"			10.0 WELL-GRADED SAN dry, gray to tan, fine- t with 20-30% subangu 11.5 \ silt. \ NOT SAMPLED.	o medium-grained			Well Casing Type: Schedule 40 PVC Diameter: 2 in
15	ss	100	17-23-25 (48)			15.0 Same as above. 16.5 NOT SAMPLED.		AOI01-05-SB-15	-17	Top: 0 ft bgs Bottom: 35 ft bgs
20	ss ss	100	17-50/4"			20.0 WELL-GRADED SAN dry, light brown (7.5Yl medium-grained (with 21.5 \ coarse-grained) with 1 \ subangular to subrour NOT SAMPLED.	R 6/3), fine- to 10% 5% fine to coarse, 73926			

WELL NUMBER A0I01-MW5

AECOM AECOM

TOTAL DEPTH 45 FT BGS PAGE 2 OF 2

PROJECT NAME Fort William Henry Harrison **CLIENT** ARNG, USACE Baltimore District PROJECT NUMBER 60552172 SITE NAME AOI 1 ENVIRONMENTAL DATA SAMPLE TYPE NUMBER BLOW COUNTS (N VALUE) GRAPHIC LOG RECOVERY U.S.C.S. DEPTH (ft) MATERIAL DESCRIPTION WELL DIAGRAM WELL-GRADED SAND WITH GRAVEL, 17-33-34 moist, light brown (7.5YR 6/3), fine- to SS 100 (67)coarse-grained with 15-25% fine to coarse, angular to subangular gravel and $\frac{7}{3921.5}$ 26.5 5-10% silt. NOT SAMPLED. Well Casing Type: Schedule 40 PVC 30 30.0 WELL-GRADED SAND WITH SILT AND 3918.0 SW-SS 81 8-50/2" Diameter: 2 in SM GRAVEL, slightly moist, light brown Top: 0 ft bgs (7.5YR 6/3), fine- to coarse-grained with AOI01-05-SB-30-32 Bottom: 35 ft bgs 35%-50% gravel and 10% moderately stiff / 3916.5 31.5 Filter Pack NOT SAMPLED. Type: #00 Filter Sand Top: 33 ft bgs Bottom: 45 ft bgs 19 - C:\USERS\JACK.HOLLINGSWORTH\DOCUMENTS\GINT\ARNG\MT\FWHH\FTWHH.GP. 35 35.0 WELL-GRADED SAND WITH SILT AND 3913.0 13-37-32 GRAVEL, moist, light brown (7.5YR 6/3), SS 92 (69)fine- to coarse-grained with 15-25% gravel and 10% silt. NOT SAMPLED. Well Screen Type: Schedule 40 40 AOI01-MW05-GW 3908.0 40 O SW WELL-GRADED SAND, wet, light brown Slot Size: 0.01 in SS (7.5YR 6/3), fine- to coarse-grained with 56 Top: 35 ft bgs 10% fine, subangular to subrounded Bottom: 45 ft bgs gravel and 5-10% silt. 41.5 NOT SAMPLED. 45 Bottom of borehole at 45.0 feet.

ARNG SMART LOG 8.5X11 V2 - - 10/30/20 16:

- 1. Headspace screening values represent total volatile organic vapors (referenced to an isobutylene standard) measured with a Photoionization Detector (PID) with 10.6 eV lamp.
- 2. Coordinates and elevation data in NAVD88 for vertical datum and NAD83/91 for horizontal datum in Montana State Plane.
- 3. First 5 feet cleared with air knife.

WELL NUMBER AOI01-MW6

AECOM AECOM

TOTAL DEPTH 37 FT BGS PAGE 1 OF 2

CLIEN	T ARNO	S, USA	ACE Baltimo	re Dis	trict		PROJECT NAME _	Fort Willia	m Henry Harrison		
			60552172				SITE NAME AOI 1				
						PLETED 10/9/20					
			TOR Caso						8.43 ft HOLI	E SIZE _	4.25 inches
			NT CME 8				GROUND WATER L	_			
			Hollow Ste						31.00 ft / Elev 39		
LOGG	ED BY _	J. Holl	ıngsworth	_	CHE	CKED BY C. Beza	- <u>▼</u> AT TIME OF	SAMPLIN	G 30.16 ft / Elev 3	3918.27 f	t
о ОЕРТН (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DE	SCRIPTION		ENVIRONMENTAL DATA	V	VELL DIAGRAM
 				GW		0.0 WELL-GRADED GRAdry, pale, medium to commend of the second of the sec	coarse, angular with ned sand.	3948.4 3947.4 3946.4	AOI01-06-SB-00-02		Annular Seal Type: Portland Cement Top: 0 ft bgs Bottom: 3 ft bgs Annular Seal Type: Portland Cement Top: 3 ft bgs
5	ss	56	35-13-10 (23)	SW		5.0 WELL-GRADED SAN dry, light brownish gra to coarse-grained (mo fine to medium gravel NOT SAMPLED.	y (10YR 6/2), fine- stly fine) with 15%	3943.4 3941.9			Bottom: 25 ft bgs
10	ss	69	28-31-40 (71)			10.0 Same as above. Silt 5-		3938.4			Well Casing Type: Schedule 40
15	ss ss	92	21-47-42 (89) 25-32- 50/5"			15.0 WELL-GRADED SAN to coarse-grained (mo 10% fine to medium g silt. WELL-GRADED SAN moist, very pale brown fine- to coarse-grained angular, fine to coarse to 2 inches in diamete Grades into fine- to coarse (mostly fine) with 10% gravel and 5-10% silt. NOT SAMPLED. WELL-GRADED SAN 1 gravel and 5-10% silt. NOT SAMPLED. WELL-GRADED SAN fine- to coarse-grained coarse, subrounded to NOT SAMPLED.	stly very fine), with ravel and 5-10% D WITH GRAVEL, 10 (10YR 7/4), very 10 with 30-45% For gravel ranging up 10 rand 5-10% silt. 10 parse-grained sand 10 fine to medium D WITH GRAVEL, 10 gray (7.5YR 6/2), 10 with 25% fine to	3933.4 3932.4 3931.9 3928.4 3926.9	AOI01-06-SB-15-17		PVC Diameter: 2 in Top: 0 ft bgs Bottom: 27 ft bgs
25											Filter Pack Type: #00 Filter

WELL NUMBER A0101-MW6

AECOM AECOM

TOTAL DEPTH 37 FT BGS PAGE 2 OF 2

PROJECT NAME Fort William Henry Harrison **CLIENT** ARNG, USACE Baltimore District PROJECT NUMBER 60552172 SITE NAME AOI 1 ENVIRONMENTAL DATA SAMPLE TYPE NUMBER BLOW COUNTS (N VALUE) GRAPHIC LOG RECOVERY U.S.C.S. DEPTH (ft) MATERIAL DESCRIPTION WELL DIAGRAM SILTY SAND WITH GRAVEL, moist, dark 3923.4 Sand SM 22-25-35 Top: 25 ft bgs yellowish brown (10YR 4/4), fine- to SS SW 25.5 3922.9 (60)Bottom: 37 ft bgs coarse-grained, slightly cohesive with 15% silt and 25% fine to coarse, subangular to 26.5 3921.9 subrounded gravel ranging up to 1.5 inches in diameter. WELL-GRADED SAND WITH GRAVEL, moist, dark yellowish brown, fine- to coarse-grained with 30-45% fine to coarse, angular to subrounded gravel and 5% silt. 30 NOT SAMPLED. 30.0 3918.4 SM 44-45-35 30.5 SS SILTY SAND, moist, yellowish brown 3917.9, 78 (80)SW (10YR 5/4), fine- to coarse-grained with AOI01-06-SB-30-32 Well Screen 30.8 3917.6 15-25% silt and 5% fine gravel. Type: Schedule 40 31.5 3916.9 Four inches of gravel, fine to coarse ranging up to 2 inches in diameter. Slot Size: 0.01 in Top: 27 ft bgs WELL-GRADED SAND WITH GRAVEL. Bottom: 37 ft bgs wet, pale brown (10YR 6/3), fine- to AOI01-MW06-GW coarse-grained with 30-45% fine to coarse gravel ranging up to 2 inches in diameter ARNG SMART LOG 8:5X11 V2 - -10/30/20 16:19 - C:\USERS\JACK.HOLLINGSWORTH\DOCUMENTS\GINT\ARNG\MT\FWHH.GP\ and 5-10% silt. 35 NOT SAMPLED. 3913.4 35.0 1-8-41 WELL-GRADED SAND WITH GRAVEL, SS 100 (49)wet, pink (7.5YR 7/3), fine- to coarse-grained with 35-45% fine to 36.5 3911.9 coarse, subangular to subrounded gravel and 5-10% silt. 1. Headspace screening values represent total volatile organic values (PID) Bottom of borehole at 37.0 feet.

2. Coordinates and elevation data in NAVD88 for vertical datum and NAD83/91 for horizontal datum in Montana State Plane.

3. First 5 feet cleared with air knife.

WELL NUMBER AOI02-MW3

AECOM AECOM

TOTAL DEPTH 40 FT BGS PAGE 1 OF 2

IENT	ARNO	S, USA	CE Baltimo	re Dist	rict		PROJECT NAME	Fort W	illiam Henry Harrisor	1	
OJE	CT NUM	BER _									_
					COM		· · · · · · · · · · · · · · · · · · ·		-		
										LE SIZE	4.25 inches
							-			2040 00 6	
		-				CKED BY Hollingsworth					
GGE		J. DEZ	а 		CHEC	J. Hollingsworth	AT TIME OF	SAIVIF		V 3929.14	Tt
(#)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DI	ESCRIPTION		ENVIRONMENTA DATA		WELL DIAGRAM
-				GW		AND COBBLES, dry,	brown (7.5YR 4/3)	3953.7	AOI02-03-SB-00-02		Annular Seal Type: Portland Cement Top: 0 ft bgs Bottom: 3 ft bgs Annular Seal Type: Portland
5 -	ss	100	7-9-7 (16)	ML		brown (10YR 5/2), w medium-grained sand	ith 15-25% fine- to	3948.7		l	Cement Top: 3 ft bgs Bottom: 27 ft bgs
0 -	SS	100	21-41-45 (86)	SP		brown (10YR 8/3), fir	ne-grained (little	3943.7	AOI02-03-SB-10-12	l	Well Casing Type: Schedule 40 PVC
5	ss	50	22-50			15.0 Same as above. Cha subangular gravel. 16.5 NOT SAMPLED.	nges to 10-15%	3938.7 3937.2			Diameter: 2 in Top: 0 ft bgs Bottom: 30 ft bgs
0 -	ss	100	9-47-23 (70)			brown (10YR 6/3), fir coarse-grained) with	ne-grained (little	3933.7 3932.2			
	OJEC TE SILLIN ILLIN ILL	OJECT NUM TE STARTE ILLING CON ILLING EQU ILLING MET GGED BY SS SS SS SS SS SS SS SS SS	OJECT NUMBER TE STARTED 10 ILLING CONTRACT ILLING EQUIPMEN ILLING METHOD GGED BY C. Bez (ii) SS 100 SS 50 SS 50	SS 100 21-41-45 (86) SS 100 9-47-23	DJECT NUMBER 60552172 TE STARTED 10/10/20 ILLING CONTRACTOR Cascade ILLING BEQUIPMENT CME 85 ILLING METHOD Hollow Stem Aug GGED BY C. Beza SS 100 7-9-7 (16) SS 100 21-41-45 (86) SP SS 50 22-50	TE STARTED 10/10/20 COM ILLING CONTRACTOR Cascade ILLING METHOD Hollow Stem Auger GGED BY C. Beza CHEC WASHING STAND BY STAND B	COMPLETED 10/10/20 COMPLETED 10/10/20 ILLING CONTRACTOR Cascade ILLING EQUIPMENT CME 85 ILLING METHOD Hollow Stem Auger GGED BY C. Beza CHECKED BY J. Hollingsworth CME 85 CME	TE STARTED 10/10/20 COMPLETED 10/10/20 EASTING 131648 ILLING CONTRACTOR Cascade GROUND ELEVAT GROUND WATER LILING BEOUPMENT CME 85 GROUND WATER LILING METHOD Hollow Stem Auger GGED BY C. Beza CHECKED BY J. Hollingsworth MATERIAL DESCRIPTION GW MATERIAL DESCRIPTION GW MATERIAL DESCRIPTION GW MATERIAL DESCRIPTION MATERIAL DESCRIPTION GW MATERIAL DESCRIPTION MATERIAL DESCRIPTION GW MATERIAL DESCRIPTION AND COBBLES, dry, brown (7.5YR 4/3) with >15% fine-grained sand and cobbles. NOT SAMPLED. SS 100 21-41-45 (86) FOR MIL MIL MATERIAL DESCRIPTION GW MATERIAL DESCRIPTION TO SAMPLED. 10.0 POORLY GRADED SAND, dry, very pale brown (10YR 8/3), fine-grained little medium-grained) with trace sit. 11.5 NOT SAMPLED. 16.5 NOT SAMPLED.	TE STARTED 10/10/20 COMPLETED 10/10/20 EASTING 1316453.436 GROUND ELEVATION 3 GROUND ELEVATION 3 GROUND WATER LEVEL AT TIME OF DRILL ALLING METHOD Hollow Stem Auger CHECKED BY J. Hollingsworth AND COBBLES, dry, brown (7.5 YR 4/3) with >15% fine-grained sand and cobbles. SS 100 7-9-7 (16) ML 50 SILT WITH SAND, slightly moist, grayish brown (10/YR 5/2), with 15.25% fine- to medium-grained sand. SS 100 21-41-45 SP 10.0 POORLY GRADED SAND, dry, very pale medium-grained with trace silt. 11.5 NOT SAMPLED. 3937.2 15.0 Same as above. Changes to 10-15% 3937.2 16.5 NOT SAMPLED. 3937.2	STE NAME AOI 2	SITE NAME

WELL NUMBER A0102-MW3

AECOM AECOM

TOTAL DEPTH 40 FT BGS PAGE 2 OF 2

CLIEN	NT ARNO	G, USA	CE Baltimo	re Dis	trict		PROJECT NAME Fort W	/illiam Henry Harrison	
PROJ	ECT NUM	IBER _	60552172				SITE NAME AOI 2		
(#) 25	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DE	SCRIPTION	ENVIRONMENTAL DATA	WELL DIAGRAM
	ss	150	10-29- 50/0"	SM		25.0 SILTY SAND WITH Control of the	10YR 4/4), fine- to >15% silt and el and cobble 12027 2	AOI02-03-SB-25-27	Filter Pack Type: #00 Filter Sand Top: 27 ft bgs Bottom: 40 ft bgs Well Casing Type: Schedule 40
30	ss ss	100	50/4"			30.0 SILTY SAND WITH G 30.5 wet, yellowish brown (medium grained with > 31.5 7 20-30% angular to sub Changes to moist. NOT SAMPLED.	10YR 5/6), fine- to 3923.2 >15% silt and		PVC Diameter: 2 in Top: 0 ft bgs Bottom: 30 ft bgs
GINTARNG/MT/FWHH/FTWHH.GP,	⊠ SS	100	50/2"	SW	0000	35.0 WELL-GRADED SAN 35.2 saturated wet, yellowis 5/6), fine-grained with 36.5 SAMPLED.	sh brown (10YR 13918.5 >15% coarse 	AOI02-MW03-GW	Type: Schedule 40 PVC Slot Size: 0.01 in Top: 30 ft bgs Bottom: 40 ft bgs
型 with 1 5. Coo	adspace s 0.6 eV lar ordinates a	np. and ele	_	in NA		Bottom of boreho	ced to an isobutylene standa	·	Photoionization Detector (PID)

WELL NUMBER AOI03-MW2

AECOM AECOM

TOTAL DEPTH 60 FT BGS PAGE 1 OF 3

CI	LIEN	T ARNO	G, USA	ACE Baltimo	re Dist	rict		PROJECT NAME Fort	William Henry Harr	ison	
				60552172				SITE NAME AOI 3			
D	ATE	STARTE	D _10	/7/20			PLETED 10/8/20				
1				TOR Caso				GROUND ELEVATION	•	HOLE SIZE	4.25 inches
1				NT CME 85				GROUND WATER LEVE			_
			_	Hollow Ste			OVED DV	\overline{Y} AT TIME OF DRIL \overline{Y} AT TIME OF SAM			
Ë	JGG		o. Bez	a		CHE	CKED BY J. Hollingsworth	AT TIME OF SAM		Elev 3946.2	П
	(#) 0	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DE		ENVIRONMENTAL DATA		WELL DIAGRAM
-	-				SW		WELL-GRADED SAN dry, tan, fine-grained vangular gravel. 2.0 NOT SAMPLED.		AOI03-02-SB-00-	02	Annular Seal Type: Portland Cement Top: 0 ft bgs Bottom: 3 ft bgs Annular Seal Type: Portland
	5	ss	100	8-8-8 (16)	SW		5.0 WELL-GRADED SAN dry, gray, fine-grained angular gravel ranging 6.5 \ diameter. NOT SAMPLED.	with 30-45%			Cement Top: 3 ft bgs Bottom: 48 ft bgs
	- 10 -	⊠ ss_	100	50/5"			10.0 Same as above. 11.5 NOT SAMPLED.		.]		Well Casing Type: Schedule 40 PVC Diameter: 2 in
1	- 15 - -	ss	100	44-50/4"	SM		15.0 SILTY SAND, dry, gra 30-45% silt and angul ranging up to 2 inches 16.5 NOT SAMPLED.	ar gravel present			Top: 0 ft bgs Bottom: 50 ft bgs
	- 20 - - -	⊠ ss	100	50/5"			20.0 Same as above. 21.5 NOT SAMPLED.				

WELL NUMBER AOI03-MW2

AECOM AECOM

TOTAL DEPTH 60 FT BGS PAGE 2 OF 3

	' <u>-</u>		ACE Baltimo	ore Dist	trict	PROJECT NAME Fort William Henry Harrison		
HI DEPTH (ft)	E S	RECOVERY %	BLOW (N VALUE)	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION	WE	ELL DIAGRAM
-	ss	225	18-50/2"	SW		25.0 WELL-GRADED SAND, dry, gray, 3968.6 fine-grained with angular gravel ranging up to 1 inch in diameter present. 26.5 NOT SAMPLED. 3967.1		
30	ss ss	100	50/4"			30.0 Same as above. Gravel ranges up to 0.5 3963.6 inches in diameter. 31.5 NOT SAMPLED. 3962.1		
35 35 35 35 36 36 36 36 36 36 36 36 36 36 36 36 36	ss	100	37-50/2"	-		35.0 WELL-GRADED SAND, dry, gray, fine- to 3958.6 medium-grained with angular gravel present ranging up to 1 inch in diameter. 36.5 NOT SAMPLED. 3957.1		Well Casing Type: Schedule 40 PVC Diameter: 2 in
- 10/30/20 16:19 - C:USERSUACK.HOLLINGSWORTH\DOCUMENTS\GINTARNG\MT\FWH\GPJ	ss	100	50	-		40.0 WELL-GRADED SAND WITH GRAVEL, 3953.6 dry, gray, fine-grained with 30% angular gravel ranging up to 2 inches in diameter. 41.5 NOT SAMPLED. 3952.1		Top: 0 ft bgs Bottom: 50 ft bgs
//30/20 16:19 - C:USERSUACK.HOLL	ss	100	14-50/4"			45.0 SILTY SAND WITH GRAVEL, slightly 3948.6 moist, gray to orange brown, fine- to medium-grained with >15% silt and 15-20% subangular gravel. Some clay / 3947.1 present		Filter Pack Type: #00 Filter Sand
ARNG SMART LOG 8.5X11_V2 10	ss	100	5-9-10 (19)	ML		50.0 Same as above. 50.3 SILT, slightly wet, white to light tan, low plasticity with clay present. 51.5 NOT SAMPLED. 3943.6 3943.3 3942.1		Top: 48 ft bgs Bottom: 60 ft bgs Well Screen Type: Schedule 40 PVC Slot Size: 0.01 in Top: 50 ft bgs Bottom: 60 ft bgs

WELL NUMBER A0103-MW2

AECOM AECOM

TOTAL DEPTH 60 FT BGS PAGE 3 OF 3

CLIEN	IT ARNO	3, US/	ACE Baltimo	re Dis	trict			PROJECT NAME FO	ort Wi	Iliam Henry Harrison	
PROJ	ECT NUM	IBER	60552172					SITE NAME AOI 3			
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	U.S.C.S.	GRAPHIC LOG		MATERIAL DE	SCRIPTION		ENVIRONMENTAL DATA	WELL DIAGRAM
55	ss	100	6-20-33 (53)	ML		51.5 55.0 56.5	NOT SAMPLED. (coni	um plasticity with 39	942.1	AOI03-MW02-GW	Well Screen Type: Schedule 40 PVC Slot Size: 0.01 in Top: 50 ft bgs Bottom: 60 ft bgs

Bottom of borehole at 60.0 feet.

- Notes:

 7. Headspace screening values represent total volatile organic vapors (referenced to an isobutylene standard) measured with a Photoionization Detector (PID) with 10.6 eV lamp.

 8. Coordinates and elevation data in NAVD88 for vertical datum and NAD83/91 for horizontal datum in Montana State Plane.
- 9. First 5 feet cleared with air knife.

ARNG SMART LOG 8.5X11_V2 - - 10/30/20 16:19 - C:USERSUACK.HOLLINGSWORTHIDOCUMENTS\GINTARNG\MT\FWHH\FTWHH.GPJ

Appendix F Analytical Results

Site Inspection Report Fort William Henry Harrison, MT

THIS PAGE INTENTIONALLY BLANK

Appendix F Laboratory Data Decontamination Water Site Inspection Report, Fort William Henry Harrison

Area of Interest	DE	CON S	OURC	E												C	C											
Sample ID	F	ΓWHH-I	DECO	N		FIELD E	BLANK		Α	OI1-MV	V2-FRE	3		AOI2-	FRB		1	OI2-M	W2-EB		AC	OI3-SB	1-0-2-E	В		MW-1	0EB	
Sample Date		11/08/	2018			11/08/	2018			05/29/	2019			05/20/	2019			05/30/	2019			05/21/	2019			05/29/	2019	
Analyte	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
Water, PFAS by LCMSMS	S Compl	iant wi	th QSI	VI 5.1 T	able B-1	5 (ng/L)																					
6:2 FTS	<	3.33	8.33	U	<	3.33	8.33	U	<	3.33	8.33	U	<	4.00	10.0	U	<	3.57	8.93	U	<	4.55	11.4	U	<	3.85	9.62	U
8:2 FTS	<		8.33	U	<		8.33	U			8.33	U		4.00	10.0	U		3.57	8.93	U		4.55	11.4	U		3.85	9.62	U
NEtFOSAA	<	6.67	8.33	U	<	6.67	8.33	U	<	6.67	8.33	U	<	8.00	10.0	U	<	7.14	8.93	U	<	9.09	11.4	U	<	7.69	9.62	U
NMeFOSAA			8.33	U			8.33	U			8.33	U		8.00	10.0	U		7.14	8.93	U		9.09	11.4	U		7.69	9.62	U
PFBA	<	3.33	8.33	U	<	3.33	8.33	U	<	3.33	8.33	U	<	4.00	10.0	U	<	3.57	8.93	U	<	4.55	11.4	U	<	3.85	9.62	U
PFBS	<	3.33	8.33	U	<	3.33	8.33	U	<	3.33	8.33	U	<	4.00	10.0	U	<	3.57	8.93	U	<	4.55	11.4	U	<	3.85	9.62	U
PFDA	<	3.33	8.33	U	<	3.33	8.33	U	<	3.33	8.33	U	<	4.00	10.0	U	<	3.57	8.93	U	<	4.55	11.4	U	<	3.85	9.62	U
PFDoA	<	3.33	8.33	U	<	3.33	8.33	U	<	3.33	8.33	U	<	4.00	10.0	U	<	3.57	8.93	U	<	4.55	11.4	U	<	3.85	9.62	U
PFHpA	<	3.33	8.33	U	<	3.33	8.33	U	<	3.33	8.33	U	<	4.00	10.0	U	<	3.57	8.93	U	<	4.55	11.4	U	<	3.85	9.62	U
PFHxA	<	3.33	8.33	U	<	3.33	8.33	U	<	3.33	8.33	U	<	4.00	10.0	U	<	3.57	8.93	U	<	4.55	11.4	U	<	3.85	9.62	U
PFHxS			8.33	U	<		8.33	U			8.33	U		4.00	10.0	U		3.57	8.93	U		4.55	11.4	U		3.85	9.62	U
PFNA	<	3.33	8.33	U	<	3.33	8.33	U	<	3.33	8.33	U	<	4.00	10.0	U	<	3.57	8.93	U	<	4.55	11.4	U	<	3.85	9.62	U
PFOA			8.33	U			8.33	U			8.33	U	<	4.00	10.0	U		3.57	8.93	U	<	4.55	11.4	U		3.85	9.62	U
PFOS	<	3.33	8.33	U	1.62	3.33	8.33	J	<	3.33	8.33	U	<	4.00	10.0	U	<	3.57	8.93	U	<	4.55	11.4	U	<	3.85	9.62	U
PFPeA			8.33	U			8.33	U			8.33	U	<	4.00	10.0	U		3.57	8.93	U		4.55	11.4	U		3.85	9.62	U
PFTeDA			8.33	U			8.33	U			8.33	U		4.00	10.0	U		3.57	8.93	U		4.55	11.4	U		3.85	9.62	U
PFTrDA	<	3.33	8.33	U	<	3.33	8.33	U	<	3.33	8.33	U	<	4.00	10.0	U	<	3.57	8.93	U	<	4.55	11.4	U	<	3.85	9.62	U
PFUnDA	٧	3.33	8.33	U	<	3.33	8.33	U	<	3.33	8.33	U	<	4.00	10.0	U	<	3.57	8.93	U	<	4.55	11.4	U	<	3.85	9.62	U

Interpreted Qualifiers

J = Estimated concentration

U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)

Chemical Abbreviations

6:2 FTS 6:2 fluorotelomer sulfonate

8:2 FTS 8:2 fluorotelomer sulfonate

NEtFOSAA N-ethyl perfluorooctane- sulfonamidoacetic acid NMeFOSAA N-methyl perfluorooctanesulfonamidoacetic acid

PFBA perfluorobutanoic acid PFBS perfluorobutanesulfonic acid PFDA perfluorodecanoic acid PFDoA perfluorododecanoic acid PFHpA perfluoroheptanoic acid PFHxA perfluorohexanoic acid perfluorohexanesulfonic acid PFNA perfluorononanoic acid PFOA perfluorooctanoic acid PFOS perfluorooctanesulfonic acid PFPeA perfluoropentanoic acid PFTeDA perfluorotetradecanoic acid PFTrDA perfluorotridecanoic acid PFUnDA perfluoro-n-undecanoic acid

Acronyms and Abbreviations

AOI Area of Interest DUP Duplicate

ERB Equipment reagent blank FRB Field reagent blank

FTWHH Fort William Henry Harrison LCMSMS Liquid Chromatography Mass Spectrometry

LOD Limit of Detection LOQ Limit of Quantitation QC Quality Control QSM Quality Systems Manual Qual Interpreted Qualifier ng/L nanogram per liter Not applicable

Appendix F Laboratory Data Decontamination Water Site Inspection Report, Fort William Henry Harrison

Area of Interest														Q	2													\neg
Sample ID	F	RB-201	191203		F	RB-202	200317		F	TWHH-	ERB-0	1	F	TWHH-	ERB-02	2	F	TWHH-	ERB-03	3	F	TWHH-	-ERB-0	4	F	TWHH	FRB-0	1
Sample Date		12/03/	2019			03/16/	2020			10/06/	2020			10/07/	2020			10/10/	2020			10/12	/2020			10/10	/2020	
Analyte	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
Water, PFAS by LCMSM	S Comp	liant wi	th QSI	/ 5.1 T	able B-1	5 (ng/L)																					
6:2 FTS	-	-	-	-	-	-		-	<	4.72	11.8	U	<	6.25	15.6	U	9.70	4.00	10.0	J	<	4.00	10.0	U	<	4.00	10.0	U
8:2 FTS	-	-	-	-	-	-		-	٧	4.72	11.8	U	<	6.25	15.6	J	<	4.00	10.0	J	<	4.00	10.0	U	<	4.00	10.0	U
NEtFOSAA	<	6.67	8.33	U	<	8.00	10.0	U	<	9.43	11.8	U	<	12.5	15.6	U	<	8.00	10.0	U	<	8.00	10.0	U	<	8.00	10.0	U
NMeFOSAA	٧	6.67	8.33	U	<	8.00	10.0	U	٧	9.43	11.8	U	<	12.5	15.6	J	<	8.00	10.0	J	<	8.00	10.0	U	<	8.00	10.0	U
PFBA	-	-	-	-	-	-		-	٧	4.72	11.8	U	<	6.25	15.6	J	<	4.00	10.0	J	<	4.00	10.0	U	<	4.00	10.0	U
PFBS	٧	3.33	8.33	U	<	4.00	10.0	U	٧	4.72	11.8	U	<	6.25	15.6	J	<	4.00	10.0	J	<	4.00	10.0	U	<	4.00	10.0	U
PFDA	<	3.33	8.33	U	<	4.00	10.0	U	<	4.72	11.8	U	<	6.25	15.6	U	<	4.00	10.0	U	<	4.00	10.0	U	<	4.00	10.0	U
PFDoA	٧	3.33	8.33	U	<	4.00	10.0	U	٧	4.72	11.8	U	<	6.25	15.6	J	<	4.00	10.0	J	<	4.00	10.0	U	<	4.00	10.0	U
PFHpA	٧	3.33	8.33	U	<	4.00	10.0	U	٧	4.72	11.8	U	<	6.25	15.6	J	<	4.00	10.0	J	<	4.00	10.0	U	<	4.00	10.0	U
PFHxA	<	3.33	8.33	U	<	4.00	10.0	U	<	4.72	11.8	U	<	6.25	15.6	U	<	4.00	10.0	U	<	4.00	10.0	U	2.28	4.00	10.0	J
PFHxS	<	3.33	8.33	U	<	4.00	10.0	U	<	4.72	11.8	U	<	6.25	15.6	U	<	4.00	10.0	U	<	4.00	10.0	U	<	4.00	10.0	U
PFNA	<	3.33	8.33	U	<	4.00	10.0	U	<	4.72	11.8	U	<	6.25	15.6	U	<	4.00	10.0	U	<	4.00	10.0	U	<	4.00	10.0	U
PFOA	<		8.33	U	<	4.00	10.0	U	<	4.72	11.8	U		6.25	15.6	U		4.00	10.0	U		4.00	10.0	U		4.00	10.0	U
PFOS	<	3.33	8.33	U	<	4.00	10.0	U	<	4.72	11.8	U	<	6.25	15.6	U	<	4.00	10.0	U	<	4.00	10.0	U	<	4.00	10.0	U
PFPeA	-	-	-	-	-	-	-	-	<	4.72	11.8	U		6.25	15.6	U		4.00	10.0	U		4.00	10.0	U		4.00	10.0	U
PFTeDA	<	3.33	8.33	U	<	4.00	10.0	U	<	4.72	11.8	U	<	6.25	15.6	U	<	4.00	10.0	U	<	4.00	10.0	U	<	4.00	10.0	U
PFTrDA	<	3.33	8.33	U	<	4.00	10.0	U	<	4.00	10.0	U	<	4.00	10.0	U	<	4.00	10.0	U	<	4.00	10.0	U	<	4.00	10.0	U
PFUnDA	<	3.33	8.33	U	<	4.00	10.0	U	<	4.72	11.8	U	<	6.25	15.6	U	<	4.00	10.0	U	<	4.00	10.0	U	<	4.00	10.0	U

Interpreted Qualifiers

J = Estimated concentration

U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)

Chemical Abbreviations

6:2 FTS 6:2 fluorotelomer sulfonate

8:2 FTS 8:2 fluorotelomer sulfonate

NEtFOSAA N-ethyl perfluorooctane- sulfonamidoacetic acid NMeFOSAA N-methyl perfluorooctanesulfonamidoacetic acid

PFBA perfluorobutanoic acid PFBS perfluorobutanesulfonic acid PFDA perfluorodecanoic acid PFDoA perfluorododecanoic acid PFHpA perfluoroheptanoic acid PFHxA perfluorohexanoic acid perfluorohexanesulfonic acid PFNA perfluorononanoic acid PFOA perfluorooctanoic acid PFOS perfluorooctanesulfonic acid PFPeA perfluoropentanoic acid PFTeDA perfluorotetradecanoic acid PFTrDA perfluorotridecanoic acid PFUnDA perfluoro-n-undecanoic acid

Acronyms and Abbreviations

AOI Area of Interest DUP Duplicate

ERB Equipment reagent blank FRB Field reagent blank

FTWHH Fort William Henry Harrison LCMSMS

Liquid Chromatography Mass Spectrometry LOD

Limit of Detection LOQ Limit of Quantitation QC Quality Control QSM Quality Systems Manual Qual Interpreted Qualifier ng/L nanogram per liter Not applicable

Appendix F Laboratory Data Residential Drinking Water Results Site Inspection Report, Fort William Henry Harrison

	Area of Interest														POTA	BLE													
	Sample ID		POTAB	LE-01			POTAB	LE-02		PC	TABLE	-02-DUF)		POTAE	LE-03			POTAB	LE-04			POTAB	LE-05		PC	TABLE	-05-DU	JР
	Sample Date		12/03/	2019			12/03/	2019			12/03/	2019			12/03/	2019			12/03/	2019			03/16/2	2020			03/16/	2020	
Analyte	EPA HA ^a	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
Water, PFAS via EPA 537.	1 (ng/L)																												
NEtFOSAA	-	٧	6.67	8.33	U	<	6.67	8.33	U	<	6.67	8.33	U	<	6.67	8.33	U	<	6.67	8.33	U	<	8.00	10.0	U	<	8.00	10.0	U
NMeFOSAA	-	<	6.67	8.33	U	<	6.67	8.33	U	<	6.67	8.33	U	<	6.67	8.33	U	<	6.67	8.33	U	<	8.00	10.0	U	<	8.00	10.0	U
PFBS	-	7.31	3.33	8.33	J	4.23	3.33	8.33	J	4.31	3.33	8.33	J	2.55	3.33	8.33	J	2.48	3.33	8.33	J	21.2	4.00	10.0		20.6	4.00	10.0	П
PFDA	-	<	3.33	8.33	U	<	3.33	8.33	U	<	3.33	8.33	U	<	3.33	8.33	U	<	3.33	8.33	U	<	4.00	10.0	U	<	4.00	10.0	U
PFDoA	-	<	3.33	8.33	U	<	3.33	8.33	U	<	3.33	8.33	U	<	3.33	8.33	U	<	3.33	8.33	U	<	4.00	10.0	U	<	4.00	10.0	U
PFHpA	-	10.2	3.33	8.33		3.82	3.33	8.33	J	4.05	3.33	8.33	J	5.77	3.33	8.33	J	3.81	3.33	8.33	J	20.9	4.00	10.0		19.1	4.00	10.0	
PFHxA	-	30.2	3.33	8.33		13.4	3.33	8.33		14.2	3.33	8.33		14.4	3.33	8.33		10.0	3.33	8.33		54.1	4.00	10.0		53.2	4.00	10.0	\Box
PFHxS	-	59.8	3.33	8.33		24.3	3.33	8.33		24.6	3.33	8.33		19.1	3.33	8.33		14.6	3.33	8.33		182	4.00	10.0		186	4.00	10.0	
PFNA	-	<	3.33	8.33	U	<	3.33	8.33	U	<	3.33	8.33	U	<	3.33	8.33	U	<	3.33	8.33	U	<	4.00	10.0	U	<	4.00	10.0	U
PFOA	70	6.46	3.33	8.33	J	3.75	3.33	8.33	J	4.41	3.33	8.33	J	6.87	3.33	8.33	J	7.76	3.33	8.33	J	16.6	4.00	10.0		16.5	4.00	10.0	\top
PFOS	70	17.0	3.33	8.33		3.11	3.33	8.33	J	3.15	3.33	8.33	J	15.4	3.33	8.33		13.3	3.33	8.33		19.5	4.00	10.0		22.1	4.00	10.0	
PFTeDA	-	<	3.33	8.33	U	<	3.33	8.33	UJ	<	3.33	8.33	U	<	3.33	8.33	U	<	3.33	8.33	U	<	4.00	10.0	U	<	4.00	10.0	U
PFTrDA	-	<	3.33	8.33	U	<	3.33	8.33	UJ	<	3.33	8.33	U	<	3.33	8.33	U	<	3.33	8.33	U	<	4.00	10.0	U	<	4.00	10.0	U
PFUnDA	-	<	3.33	8.33	U	<	3.33	8.33	U	<	3.33	8.33	U	<	3.33	8.33	U	<	3.33	8.33	U	<	4.00	10.0	U	<	4.00	10.0	U
Total PFOA+PFOS	70	23.5	3.33			6.86	3.33			7.56	3.33			22.3	3.33			21.1	3.33			36.1	4.00			38.6	4.00		\top

Grey Fill

Detected concentration exceeded EPA HA

References

a. United States Environmental Protection Agency (EPA). 2016. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA). Office of Water (4304T). Health and Ecological Criteria Division, Washington, DC 20460. EPA Document Number: 822-R-16-005. May 2016. / EPA. 2016. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS). Office of Water (4304T). Health and Ecological Criteria Division, Washington, DC 20460. EPA Document Number: 822-R-16-004. May 2016.

Interpreted Qualifiers

J = Estimated concentration

U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)

UJ = The analyte was not detected at a level greater than or equal to the adjusted DL. However, the reported adjusted DL is approximate and may be inaccurate or imprecise.

Chemical Abbreviations

NEtFOSAA N-ethyl perfluorooctane- sulfonamidoacetic acid NMeFOSAA N-methyl perfluorooctanesulfonamidoacetic acid PFBS perfluorobutanesulfonic acid

PFDA perfluorodecanoic acid PFDoA perfluorododecanoic acid PFHpA perfluoroheptanoic acid PFHxA perfluorohexanoic acid **PFHxS** perfluorohexanesulfonic acid PFNA perfluorononanoic acid PFOA perfluorooctanoic acid PFOS perfluorooctanesulfonic acid **PFTeDA** perfluorotetradecanoic acid PFTrDA perfluorotridecanoic acid PFUnDA perfluoro-n-undecanoic acid

Acronyms and Abbreviations DUP Duplicate

EPA United States Environmental Protection Agency

HA Health Advisory
LOD Limit of Detection
LOQ Limit of Quantitation
Qual Interpreted Qualifier
ng/L nanogram per liter
- Not applicable

Area of Interes	t													AO	101													
Sample ID		AOI1-H	IA1-0-2			AOI1-H	A1-2-4			AOI1-H	IA2-0-2			AOI1-H	IA2-2-4			AOI1-S	B1-0-2		A	AOI1-SE	31-20-22	2	Α	OI1-SE	1-38-40)
Sample Date		02/12	/2019			02/12	/2019			02/12	/2019			02/12	/2019			02/13/	2019			02/13	/2019			02/13	2019	
Depth	1	0 -	2 ft			2 - 4 ft				0 -	2 ft			2 -	4 ft			0 - :	2 ft			20 -	22 ft			38 -	40 ft	
Analyte	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
pH	8.74	1.00	1.00		9.02	1.00	1.00		8.59	1.00	1.00		8.12	1.00	1.00		8.56	1.00	1.00		8.92	1.00	1.00		8.67	1.00	1.00	
Total Organic Carbon (mg/kg)	625	200	250		<	200	250	U	<	200	250	U	<	200	250	U	5690	200	250		<	200	250	U	<	200	250	U

Acronyms and Abb	reviations
AOI	Area of Interest
DUP	Duplicate
ft	ft
HA	Hand Auger
LOD	Limit of Detection
LOQ	Limit of Quantitation
Qual	Interpreted Qualifier
mg/kg	milligram per kilogram
SB	Soil boring
SS	Surface Soil
<	analyte not detected above the LOD

Interpreted Qualifiers

J = Estimated concentration

U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)

Appendix F-TOC and pH
Page 1 of 9

Area of Interest														AO	101													
Sample ID		AOI1-S	B2-0-2		A	OI1-SB	2-15-17	'	Α	OI1-SE	32-28-30)		A0I1-S	B3-0-2		Α	011-SB	3-18-20)	A01	1-SB3-1	18-20-D	UP	А	011-SB	3-38-40	
Sample Date		02/15	/2019			02/15/	/2019			02/15	/2019			02/20/	2019			02/20/	2019			02/20	/2019			02/20/	2019	
Depth		0 -	2 ft			02/15/2019 15 - 17 ft ult LOD LOQ Qual F				28 -	30 ft			0 - :	2 ft			18 - 2	20 ft			18 - :	20 ft			38 - 4	40 ft	
Analyte	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
pH	8.64	1.00	1.00		8.95	1.00	1.00		8.70	1.00	1.00		8.41	1.00	1.00		9.41	1.00	1.00		8.55	1.00	1.00		9.46	1.00	1.00	
Total Organic Carbon (mg/kg)	7080	200	250		1900	200	250		<	200	250	U	13400	200	250		<	200	250	U	312	200	250		٧	200	250	U

Acronyms and Abb	previations
AOI	Area of Interest
DUP	Duplicate
ft	ft
HA	Hand Auger
LOD	Limit of Detection
LOQ	Limit of Quantitation
Qual	Interpreted Qualifier
mg/kg	milligram per kilogram
SB	Soil boring
SS	Surface Soil
<	analyte not detected above the LOD

Interpreted Qualifiers

J = Estimated concentration

U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)

Appendix F-TOC and pH
Page 2 of 9

Area of Interest														AO	101													
Sample ID	AC	0101-04	SB-30-	-32	AC	0101-05-	SB-15-	17	AOI0	1-05-SE	3-15-17-	DUP		AOI1-S	S1-0-2		A	OI1-SS	31-0-2R			AOI1-S	S2-0-2			AOI1-S	S3-0-2	
Sample Date		10/09	/2020			10/08	/2020			10/08	/2020			02/14	/2019			05/20/	2019			02/14	/2019			02/14/	2019	
Depth		30 -	32 ft			10/08/2020 15 - 17 ft				15 -	17 ft			0 -	2 ft			0 - 2	2 ft			0 - :	2 ft			0 - :	2 ft	
Analyte	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
pH	8.18	1.00	1.00	J	7.61	1.00	1.00	J	8.92	1.00	1.00	J	8.87	1.00	1.00		8.10	1.00	1.00		8.53	1.00	1.00		8.93	1.00	1.00	
Total Organic Carbon (mg/kg)	838	200	250		977	200	250		1750	200	250		17300	200	250		14800	200	250		3400	200	250		6570	200	250	

Acronyms and Abb	reviations
AOI	Area of Interest
DUP	Duplicate
ft	ft
HA	Hand Auger
LOD	Limit of Detection
LOQ	Limit of Quantitation
Qual	Interpreted Qualifier
mg/kg	milligram per kilogram
SB	Soil boring
SS	Surface Soil
<	analyte not detected above the LOD

Interpreted Qualifiers

U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)

Appendix F-TOC and pH
Page 3 of 9

Area of Interest						AOI	101													AO	102							
Sample ID		AOI1-S	S4-0-2			AOI1-S	S5-0-2			A0I1-S	S6-0-2			AOI2-H	A1-0-2			AOI2-H	A1-2-4			AOI2-H	IA2-0-2			AOI2-H	A2-2-4	
Sample Date		02/14	/2019			02/14/	2019			02/20	/2019			02/13	2019			02/13/	2019			02/13	/2019			02/13	2019	
Depth	ı	0 -	2 ft			02/14/2019 0 - 2 ft				0 -	2 ft			0 -	2 ft			2 - 4	4 ft			0 -	2 ft			2 -	4 ft	
Analyte	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
pH	7.93	1.00	1.00		8.50	1.00	1.00		8.65	1.00	1.00		7.95	1.00	1.00		8.06	1.00	1.00		7.94	1.00	1.00		8.15	1.00	1.00	i l
Total Organic Carbon (mg/kg)	2540	200	250		4330	200	250		3220	200	250		6450	200	250		5280	200	250		6760	200	250		5210	200	250	

Acronyms and Abb	previations
AOI	Area of Interest
DUP	Duplicate
ft	ft
HA	Hand Auger
LOD	Limit of Detection
LOQ	Limit of Quantitation
Qual	Interpreted Qualifier
mg/kg	milligram per kilogram
SB	Soil boring
SS	Surface Soil
<	analyte not detected above the LOD

Interpreted Qualifiers

J = Estimated concentration

U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)

Appendix F-TOC and pH
Page 4 of 9

Area of Interest														AO	102													
Sample ID		AOI2-H	A3-0-2			AOI2-H	A3-2-4			AOI2-F	IA4-0-2			AOI2-H	A4-2-4			AOI2-H	A5-0-2			AOI2-H	A5-2-4			AOI2-H	A6-0-2	
Sample Date		02/13	/2019			02/13/	/2019			02/13	/2019			02/13/	2019			02/13/	2019			02/13	/2019			02/12/	2019	
Depth		0 -	2 ft			02/13/2019 2 - 4 ft				0 -	2 ft			2 - 4	4 ft			0 - 2	2 ft			2	4 ft			0 - :	2 ft	
Analyte	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
pH	7.97	1.00	1.00		8.09	1.00	1.00		7.56	1.00	1.00		7.69	1.00	1.00		7.82	1.00	1.00		7.62	1.00	1.00		8.06	1.00	1.00	
Total Organic Carbon (mg/kg)	5870	200	250		7630	200	250		50000	200	250		7770	200	250		11500	200	250		13900	200	250		10900	200	250	

Acronyms and Abb	reviations
AOI	Area of Interest
DUP	Duplicate
ft	ft
HA	Hand Auger
LOD	Limit of Detection
LOQ	Limit of Quantitation
Qual	Interpreted Qualifier
mg/kg	milligram per kilogram
SB	Soil boring
SS	Surface Soil
<	analyte not detected above the LOI

Interpreted Qualifiers

U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)

Appendix F-TOC and pH
Page 5 of 9

Area of Interest														AO	102													
Sample ID		AOI2-H	A6-2-4		AC	DI2-HA6	-2-4-DU	IP		AOI2-S	B1-0-2			AOI2-SE	31-9-11		Α	OI2-SB	1-18-20			AOI2-S	B2-0-2		AC	12-SB2	-0-2-DU	Р
Sample Date		02/12	/2019			02/12/	/2019			05/21	/2019			05/21/	2019			05/21/	2019			05/23	/2019			05/23/	2019	
Depth		2	4 ft			2 - 4	4 ft			0 -	2 ft			9 - 1	1 ft			18 - 2	20 ft			0 - :	2 ft			0 - 2	2 ft	
Analyte	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
pH	8.24	1.00	1.00		8.17	1.00	1.00		8.31	1.00	1.00		8.81	1.00	1.00		8.78	1.00	1.00		8.49	1.00	1.00		8.47	1.00	1.00	
Total Organic Carbon (mg/kg)	4740	200	250		4250	200	250		16500	200	250		1470	200	250		636	200	250		17900	200	250		16900	200	250	

Acronyms and Abb	reviations
AOI	Area of Interest
DUP	Duplicate
ft	ft
HA	Hand Auger
LOD	Limit of Detection
LOQ	Limit of Quantitation
Qual	Interpreted Qualifier
mg/kg	milligram per kilogram
SB	Soil boring
SS	Surface Soil
<	analyte not detected above the LOD

Interpreted Qualifiers

J = Estimated concentration

U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)

Appendix F-TOC and pH
Page 6 of 9

Area of Interest														AO	102													
Sample ID	-	AOI2-SI	B2-8-10)	P	AOI2-SB	2-18-20)	AC	102-03	-SB-00-	02		AOI2-S	S1-0-2			AOI2-S	S2-0-2		AC	012-882	2-0-2-DL	JP		AOI2-S	S3-0-2	
Sample Date		05/23	/2019			05/23/2019 18 - 20 ft				10/06	/2020			05/20	2019			05/20	2019			05/20	/2019			05/20	/2019	
Depth		8 - 10 ft 18 - 20 ft						0 -	2 ft			0 -	2 ft			0 - :	2 ft			0 -	2 ft			0 -	2 ft			
Analyte	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
w.l.l	9.11	1.00	1.00		9.58	1.00	1.00		0.75	1.00	1.00	_	8.37	1.00	1.00		8.69	1.00	1.00		8.72	1.00	1.00		8.44	1.00	1.00	
Total Organic Carbon (mg/kg)			250			200	250		_	200	250	J		200	250			200	250			200	250		_		250	

Acronyms and Abb	reviations
AOI	Area of Interest
DUP	Duplicate
ft	ft
HA	Hand Auger
LOD	Limit of Detection
LOQ	Limit of Quantitation
Qual	Interpreted Qualifier
mg/kg	milligram per kilogram
SB	Soil boring
SS	Surface Soil
<	analyte not detected above the LOI

Interpreted Qualifiers

J = Estimated concentration

U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)

Appendix F-TOC and pH
Page 7 of 9

Area of Interest				AC	102													AO	103									
Sample ID		AOI2-S	S4-0-2			AOI2-S	S5-0-2			AOI3-H	A1-0-2			AOI3-H	A1-2-4			AOI3-S	B1-0-2		А	OI3-SE	31-18-20)	Α	OI3-SE	31-40-42	2
Sample Date		05/20	/2019			05/20/	2019			02/12	/2019			02/12	/2019			05/22	/2019			05/22	/2019			05/22	/2019	
Depth		0 -	2 ft 0 - 2 ft						0 -	2 ft			2 -	4 ft			0 -	2 ft			18 -	20 ft			40 -	42 ft		
Analyte	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
pH	8.62	1.00	1.00		8.33	1.00	1.00		8.34	1.00	1.00		8.87	1.00	1.00		8.16	1.00	1.00		9.73	1.00	1.00		8.08	1.00	1.00	
Total Organic Carbon (mg/kg)	3210	200	250		6930	200	250		641	200	250	J	<	200	250	U	8360	200	250		979	200	250		245	200	250	J

Acronyms and Abb	reviations
AOI	Area of Interest
DUP	Duplicate
ft	ft
HA	Hand Auger
LOD	Limit of Detection
LOQ	Limit of Quantitation
Qual	Interpreted Qualifier
mg/kg	milligram per kilogram
SB	Soil boring
SS	Surface Soil
<	analyte not detected above the LOD

Interpreted Qualifiers

J = Estimated concentration

U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)

Appendix F-TOC and pH
Page 8 of 9

Area of Interest		AO	103	
Sample ID	A	O103-S	35-00-0	2
Sample Date		10/07/	2020	
Depth		0 - 2	2 ft	
Analyte	Result	LOD	LOQ	Qual
pH	8.56	1.00	1.00	J
Total Organic Carbon (mg/kg)	4600	200	250	

Acronyms and Abbreviations

ACIONYINS and ADD	TOVIBLIONS
AOI	Area of Interest
DUP	Duplicate
ft	ft
HA	Hand Auger
LOD	Limit of Detection
LOQ	Limit of Quantitation
Qual	Interpreted Qualifier
mg/kg	milligram per kilogram
SB	Soil boring
SS	Surface Soil
<	analyte not detected above the LOD

Interpreted Qualifiers

- J = Estimated concentration
- U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)

Appendix F-TOC and pH
Page 9 of 9

Area of Interest														AOI)1													
Sample ID	A	OI1-SB	1-20-22	2	AOI*	1-SB1-2	0-22 (F	RE)	A	OI1-SB	1-38-40)	A	OI1-SB	2-15-1	7	A	OI1-SB	2-28-30)	А	011-SB	3-18-20)	A01	1-SB3-1	8-20-D	UP
Sample Date		02/13/2	2019			02/13/	2019			02/13/	2019			02/15/	2019			02/15/	2019			02/20/	2019			02/20/	2019	
Depth		20 - 2	2 ft			20 - 2	2 ft			38 - 4	10 ft			15 - 1	17 ft			28 - 3	30 ft			18 - 2	20 ft			18 - 2	20 ft	
Analyte	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
Soil, PFAS by LCMSMS	Complia	nt with	QSM 5	.1 Tabl	e B-15 (u	ıg/Kg)																						
6:2 FTS	0.051	0.418	1.04	J	-	-	-	-	<	0.439	1.10	U	<	0.414	1.03	U	٧	0.434	1.08	U	<	0.421	1.05	U	<	0.421	1.05	U
8:2 FTS	<	0.418	1.04	U	-	-		-	<	0.439	1.10	U	<	0.414	1.03	U	<	0.434	1.08	U	0.117	0.421	1.05	J	<	0.421	1.05	U
NEtFOSAA	<	0.418	1.04	U	-	-	-	-	<	0.439	1.10	U	<	0.414	1.03	U	<	0.434	1.08	U	0.135	0.421	1.05	J			1.05	U
NMeFOSAA	<	0.418	1.04	U	-	-	-	-	<	0.439	1.10	U		0.414	1.03	U	<	0.434	1.08	U	0.136	0.421	1.05	J			1.05	U
PFBA	-	-	-	-	0.00848	0.423	1.06	J	<	0.439	1.10	U		0.414	1.03	U	<	0.434	1.08	U	<	0.421	1.05	U			1.05	U
PFBS	0.00418		1.04	J	-	-	-	-	<	0.439	1.10	U		0.414		J	<	0.434	1.08	U	0.021	0.421	1.05	J			1.05	U
PFDA	0.014	0.418	1.04	J	-	-	-	-	0.013	0.439	1.10	J		0.414		U	<	0.434	1.08	U	<	0.421	1.05	U			1.05	U
PFDoA	0.00994	_	1.04	J	-	-	-	-	<	0.439		U		0.414		U	<	0.434	1.08	U	0.233	0.421	1.05	J			1.05	U
PFHpA	<	0.418	1.04	U	-	-	-	-	<	0.439	1.10	U		0.414	1.03	U	<	0.434	1.08	U	0.021	0.421	1.05	J	0.00431	0.421	1.05	J
PFHxA	0.035	0.418	1.04	J	-	-	-	-	<	0.439	1.10	U		0.414	1.03	J	0.059	0.434	1.08	J	<	0.421	1.05	U			1.05	U
PFHxS	<	0.418	1.04	U	-	-	-	-	<	0.439	1.10	U	0.916	0.414	1.03	J	<	0.434	1.08	U	0.034	0.421	1.05	J	<	0.421	1.05	U
PFNA	<	0.418	1.04	U	-	-	-	-	<	0.439	1.10	U		0.414	1.03	U	<	0.434	1.08	U	<	0.421	1.05	U			1.05	U
PFOA	<	0.418	1.04	U	-	-			<	0.439	1.10	U	0.055	0.414	1.03	J	<	0.434	1.08	U	<	0.421	1.05	U	<	0.421	1.05	U
PFOS	-	-	-	-	0.039	0.423	1.06	J	0.014	0.439	1.10	J	0.478	0.414	1.03	J	<	0.434	1.08	U	0.526	0.421	1.05	J	<	0.421	1.05	U
PFPeA	<	0.418	1.04	U	-	-		-	<	0.439	1.10	U	<	0.414	1.03	U	<	0.434	1.08	U	<	0.421	1.05	U	<	0.421	1.05	U
PFTeDA	<	0.418	1.04	U	-	-	-	-	<	0.439	1.10	U	<	0.414	1.03	U	<	0.434	1.08	U	0.13	0.421	1.05	J	0.012	0.421	1.05	J
PFTrDA	<	0.418	1.04	U	-	-	-	-	<	0.439	1.10	U	<	0.414	1.03	U	<	0.434	1.08	U	0.238	0.421	1.05	J	0.00534	0.421	1.05	J
PFUnDA	0.00496	0.418	1.04	J	-	-	-	-	<	0.439	1.10	U	<	0.414	1.03	U	<	0.434	1.08	U	0.14	0.421	1.05	J	<	0.421	1.05	U

Interpreted Qualifiers

J = Estimated concentration

U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)

Chemical Abbreviations

6:2 FTS 6:2 fluorotelomer sulfonate 8:2 FTS 8:2 fluorotelomer sulfonate

N-ethyl perfluorooctane- sulfonamidoacetic acid NEtFOSAA NMeFOSAA N-methyl perfluorooctanesulfonamidoacetic acid

PFBA perfluorobutanoic acid PFBS perfluorobutanesulfonic acid PFDA perfluorodecanoic acid PFDoA perfluorododecanoic acid PFHpA perfluoroheptanoic acid PFHxA perfluorohexanoic acid PFHxS perfluorohexanesulfonic acid PFNA perfluorononanoic acid PFOA perfluorooctanoic acid PFOS perfluorooctanesulfonic acid perfluoropentanoic acid PFPeA PFTeDA perfluorotetradecanoic acid PFTrDA perfluorotridecanoic acid PFUnDA perfluoro-n-undecanoic acid

Acronyms and Abbreviations

AOI Area of Interest DUP Duplicate

LCMSMS

Liquid Chromatography Mass Spectrometry Limit of Detection LOD

LOQ Limit of Quantitation QSM Quality Systems Manual Qual Interpreted Qualifier RE Re-extracted SB Soil boring micrograms per Kilogram

ug/Kg

Not applicable

analyte not detected above the LOD

Appendix F-Soil (PFAS) AECOM Page 1 of 3

Area of Interest														AO	11													
Sample ID	A	011-SB3	3-38-40		AO	101-04-5	SB-15-1	17	AO	101-04-	SB-30-	32	AO	101-05-	SB-15-	17	AO	01-05-	SB-30-3	32	AO	101-06-	SB-15-	-17	AO	101-06-9	SB-30-3	32
Sample Date		02/20/2	2019			10/09/2	2020			10/09/	2020			10/08/	2020			10/08/2	2020			10/09/	2020			10/09/2	2020	
Depth		38 - 4				15 - 1	7 ft			30 - 3				15 - 1				30 - 3	2 ft			15 - 1				30 - 3		
Analyte	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
Soil, PFAS by LCMSMS				1 Tabl																								
6:2 FTS		0.502	1.26	U		0.467		U				U	<	0.460		U		0.409		U	<	0.428		U	<	0.452		U
8:2 FTS		0.502	1.26	U			1.17	U		0.480		U	<	0.460	1.15	U			_	U	<	0.428	1.07	U	<	0.452		U
	0.025	0.502	1.26	J		0.101	1.17	U		0.480	::20	U	<	0.460	1.15	U		0.409	1.02	U	<	0.428	1.07	U	<	0.452	1.13	U
		0.502	1.26	J			1.17	U		0.480	_	U	<	0.460	1.15	U			1.02	U	<	0.428	1.07	U	<		1.13	U
PFBA		0.502	1.26	U		0.467	1.17	U		0.480		U	<	0.460	1.15	U			1.02	U	<	0.428	1.07	U	<	0.452	1.13	U
PFBS		0.502	1.26	U		0.101	1.17	U		0.480		U	<	0.460	1.15	U		0.409	1.02	U	<	0.428	1.07	U	<	0.452	1.13	U
PFDA		0.502	1.26	U			1.17	U		0.480		U	<	0.460	1.15	U		0.409	1.02	U	<	0.428	1.07	U	<		1.13	U
PFDoA	0.013	0.502	1.26	J		0.467	1.17	U		0.480		U	<	0.460	1.15	U		0.409	1.02	U	<	0.428	1.07	U	<	0.452	1.13	U
PFHpA	0.011	0.502	1.26	J	<	0.467	1.17	U	<	0.480	1.20	U	<	0.460	1.15	U	<	0.409	1.02	U	<	0.428	1.07	U	<	0.452	1.13	U
PFHxA	<	0.502	1.26	U	<	0.467	1.17	U	<	0.480	1.20	U	<	0.460	1.15	U	<	0.409	1.02	U	<	0.428	1.07	U	<	0.452	1.13	U
PFHxS	0.033	0.502	1.26	7	<	0.467	1.17	J	<	0.480	1.20	U	<	0.460	1.15	U	<	0.409	1.02	J	<	0.428	1.07	U	<	0.452	1.13	U
PFNA	<	0.502	1.26	U	<	0.467	1.17	U	٧	0.480	1.20	U	<	0.460	1.15	U	<	0.409	1.02	U	<	0.428	1.07	U	<	0.452	1.13	U
PFOA	<	0.502	1.26	U	<	0.467	1.17	U	<	0.480	1.20	U	<	0.460	1.15	U	<	0.409	1.02	U	<	0.428	1.07	U	<	0.452	1.13	U
PFOS	0.135	0.502	1.26	J	<	0.467	1.17	U	<	0.480	1.20	U	<	0.460	1.15	U	<	0.409	1.02	U	<	0.428	1.07	U	<	0.452	1.13	U
PFPeA	<	0.502	1.26	U	<	0.467	1.17	U	<	0.480	1.20	U	<	0.460	1.15	U	<	0.409	1.02	U	<	0.428	1.07	U	<	0.452	1.13	U
PFTeDA	0.015	0.502	1.26	J	<	0.467	1.17	U	<	0.480	1.20	U	<	0.460	1.15	U	<	0.409	1.02	U	<	0.428	1.07	U	<	0.452	1.13	U
PFTrDA	<	0.502	1.26	U	<	0.467	1.17	U	<	0.480	1.20	U	<	0.460	1.15	U	<	0.409	1.02	U	<	0.428	1.07	U	<	0.452	1.13	U
PFUnDA	<	0.502	1.26	U	<	0.467	1.17	U	<	0.480	1.20	U	<	0.460	1.15	U	<	0.409	1.02	U	<	0.428	1.07	U	<	0.452	1.13	U

Interpreted Qualifiers

J = Estimated concentration

U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)

Chemical Abbreviations

6:2 FTS 6:2 fluorotelomer sulfonate 8:2 FTS 8:2 fluorotelomer sulfonate

NEtFOSAA N-ethyl perfluorooctane- sulfonamidoacetic acid

NMeFOSAA N-methyl perfluorooctanesulfonamidoacetic acid

perfluorobutanoic acid PFBA PFBS perfluorobutanesulfonic acid perfluorodecanoic acid PFDA PFDoA perfluorododecanoic acid PFHpA perfluoroheptanoic acid PFHxA perfluorohexanoic acid PFHxS perfluorohexanesulfonic acid PFNA perfluorononanoic acid PFOA perfluorooctanoic acid PFOS perfluorooctanesulfonic acid PFPeA perfluoropentanoic acid PFTeDA perfluorotetradecanoic acid PFTrDA perfluorotridecanoic acid PFUnDA perfluoro-n-undecanoic acid

Acronyms and Abbreviations

AOI Area of Interest DUP Duplicate

LCMSMS Liquid Chromatography Mass Spectrometry

LOD Limit of Detection LOQ Limit of Quantitation QSM Quality Systems Manual Qual Interpreted Qualifier RE Re-extracted SB Soil boring micrograms per Kilogram ug/Kg

Not applicable

analyte not detected above the LOD

Appendix F-Soil (PFAS) AECOM

Area of Interest						AOI)2									AC	0103			
Sample ID	AC	DI2-SB	1-18-20)	A	DI2-SB2	2-18-20		AO	102-03-	SB-25-	27	A	DI3-SB	1-18-20)	A	OI3-SB	1-40-42	2
Sample Date		05/21/2	2019			05/23/2	2019			10/10/	2020			05/22/2	2019			05/22/	2019	
Depth		18 - 2	0 ft			18 - 2	0 ft			25 - 2	27 ft			18 - 2	0 ft			40 - 4	2 ft	
Analyte	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
Soil, PFAS by LCMSMS	Complian	t with	QSM 5	1 Tabl	e B-15 (u	g/Kg)														
6:2 FTS	<	0.403	1.01	U	0.014	0.395	0.988	J	<	0.418	1.05	U	٧	0.472	1.18	U	<	0.537	1.34	U
8:2 FTS	<	0.403	1.01	U	0.00707	0.395	0.988	J	<	0.418	1.05	U	<	0.472	1.18	U	<	0.537	1.34	U
NEtFOSAA	<	0.403	1.01	U	٧	0.395	0.988	U	<	0.418	1.05	U	٧	0.472	1.18	U	<	0.537	1.34	U
NMeFOSAA	<	0.403	1.01	U	<	0.395	0.988	U	<	0.418	1.05	U	<	0.472	1.18	U	<	0.537	1.34	U
PFBA	<	0.403	1.01	U	<	0.395	0.988	J	٧	0.418	1.05	U	<	0.472	1.18	J	0.059	0.537	1.34	J
PFBS	<	0.403	1.01	U	0.00186	0.395	0.988	J	<	0.418	1.05	U	<	0.472	1.18	U	0.147	0.537	1.34	J
PFDA	<	0.403	1.01	U	<	0.395	0.988	U	<	0.418	1.05	U	<	0.472	1.18	U	<	0.537	1.34	U
PFDoA	<	0.403	1.01	U	<	0.395	0.988	J	٧	0.418	1.05	U	<	0.472	1.18	J	<	0.537	1.34	U
PFHpA	<	0.403	1.01	U	<	0.395	0.988	J	٧	0.418	1.05	U	<	0.472	1.18	J	0.022	0.537	1.34	J
PFHxA	<	0.403	1.01	U	<	0.395	0.988	J	٧	0.418	1.05	U	0.046	0.472	1.18	J	0.314	0.537	1.34	J
PFHxS	<	0.403	1.01	U	0.029	0.395	0.988	J	٧	0.418	1.05	U	0.00812	0.472	1.18	7	0.128	0.537	1.34	J
PFNA	<	0.403	1.01	U	<	0.395	0.988	J	٧	0.418	1.05	U	<	0.472	1.18	J	<	0.537	1.34	U
PFOA	<	0.403	1.01	U	<	0.395	0.988	U	<	0.418	1.05	U	<	0.472	1.18	U	<	0.537	1.34	U
PFOS	0.00678	0.403	1.01	J	<	0.395	0.988	U	0.237	0.418	1.05	J	0.056	0.472	1.18	J	0.021	0.537	1.34	J
PFPeA	<	0.403	1.01	U	<	0.395	0.988	U	<	0.418	1.05	U	<	0.472	1.18	U	0.129	0.537	1.34	J
PFTeDA	<	0.403	1.01	U	<	0.395	0.988	U	<	0.418	1.05	U	<	0.472	1.18	U	<	0.537	1.34	U
PFTrDA	<	0.403	1.01	U	<	0.395	0.988	U	٧	0.418	1.05	U	<	0.472	1.18	U	<	0.537	1.34	U
PFUnDA	<	0.403	1.01	U	<	0.395	0.988	U	<	0.418	1.05	U	<	0.472	1.18	U	<	0.537	1.34	U

Interpreted Qualifiers

J = Estimated concentration

U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)

Chemical Abbreviations

6:2 FTS 6:2 fluorotelomer sulfonate 8:2 FTS 8:2 fluorotelomer sulfonate

NEtFOSAA N-ethyl perfluorooctane- sulfonamidoacetic acid

NMeFOSAA N-methyl perfluorooctanesulfonamidoacetic acid

perfluorobutanoic acid PFBA PFBS perfluorobutanesulfonic acid perfluorodecanoic acid PFDA PFDoA perfluorododecanoic acid PFHpA perfluoroheptanoic acid PFHxA perfluorohexanoic acid PFHxS perfluorohexanesulfonic acid PFNA perfluorononanoic acid PFOA perfluorooctanoic acid PFOS perfluorooctanesulfonic acid PFPeA perfluoropentanoic acid PFTeDA perfluorotetradecanoic acid PFTrDA perfluorotridecanoic acid PFUnDA perfluoro-n-undecanoic acid

Acronyms and Abbreviations

AOI Area of Interest DUP Duplicate

LCMSMS Liquid Chromatography Mass Spectrometry

LOD Limit of Detection LOQ Limit of Quantitation QSM Quality Systems Manual Qual Interpreted Qualifier RE Re-extracted SB Soil boring micrograms per Kilogram ug/Kg

Not applicable

analyte not detected above the LOD

Appendix F-Soil (PFAS) AECOM

	Area of Interest				AO	101													AOI)2									
	Sample ID	F	AOI1-HA1-2-4 02/12/2019 2 - 4 ft				AOI1-HA	2-2-4			4012-H	1-2-4		A	4012-H	A2-2-4		P	AOI2-HA	13-2-4			AOI2-H	44-2-4		F	AOI2-HA	45-2-4	
	Sample Date		02/12/2	2019			02/12/2	2019			02/13/2	2019			02/13/	2019			02/13/2	2019			02/13/	2019			02/13/2	2019	
	Depth		2 - 4	ft			2 - 4	ft			2 - 4	ft			2 - 4	1 ft			2 - 4	ft			2 - 4	ft			2 - 4	ft	
Analyte	OSD Screening	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
	Level a																												
Soil, PFAS by LCMSMS																													
6:2 FTS	-		0.424		J	0.041		1.04	J	<	0.476	1.19	U	0.041	0.444	1.11	J		0.469	1.17	J	0.026		1.18	J	<			U
8:2 FTS	-	<	0.424	1.06	U	<	0.418	1.04	U	<	0.476	1.19	U	<	0.444	1.11	U	<	0.469	1.17	U	<	0.471	1.18	U	<		1.03	U
NEtFOSAA	-	0.018	0.424	1.06	J	<	0.418	1.04	U	<	0.476	1.19	U	<	0.444	1.11	U	<	0.469	1.17	U	<	0.471	1.18	U	<	0.412	1.03	U
NMeFOSAA	-	<	0.424	1.06	U	<	0.418	1.04	U	<	0.476	1.19	U	<	0.444	1.11	U	<	0.469	1.17	U	<	0.471	1.18	U	<		1.03	U
PFBA	-	<	0.424	1.06	U	<	0.418	1.04	U	<	0.476	1.19	U	<	0.444	1.11	U	0.168	0.469	1.17	J	<	0.471	1.18	U	<	0.412	1.03	U
PFBS	1600000	0.00547	0.424	1.06	J	<	0.418	1.04	U	0.0085	0.476	1.19	J	<	0.444	1.11	U	0.027	0.469	1.17	J	<	0.471	1.18	U	0.047	0.412	1.03	J
PFDA	-	<	0.424	1.06	U	<	0.418	1.04	U	<	0.476	1.19	U	<	0.444	1.11	U	0.015	0.469	1.17	J	<	0.471	1.18	U	<	0.412	1.03	U
PFDoA	-	0.013	0.424	1.06	J	<	0.418	1.04	U	<	0.476	1.19	U	<	0.444	1.11	U	<	0.469	1.17	U	<	0.471	1.18	U	0.018	0.412	1.03	J
PFHpA	-	0.01	0.424	1.06	J	<	0.418	1.04	U	<	0.476	1.19	U	<	0.444	1.11	U	0.022	0.469	1.17	J	0.054	0.471	1.18	J	<	0.412	1.03	U
PFHxA	-	0.061	0.424	1.06	J	0.035	0.418	1.04	J	<	0.476	1.19	U	0.057	0.444	1.11	J	0.146	0.469	1.17	J	0.141	0.471	1.18	J	0.144	0.412	1.03	J
PFHxS	-	<	0.424	1.06	U	<	0.418	1.04	U	0.129	0.476	1.19	J	<	0.444	1.11	U	٧	0.469	1.17	U	0.091	0.471	1.18	J	0.307	0.412	1.03	J
PFNA	-	<	0.424	1.06	U	<	0.418	1.04	U	<	0.476	1.19	U	<	0.444	1.11	U	<	0.469	1.17	U	0.037	0.471	1.18	J	0.043	0.412	1.03	J
PFOA	1600	<	0.424	1.06	U	<	0.418	1.04	U	<	0.476	1.19	U	<	0.444	1.11	U	<	0.469	1.17	U	0.083	0.471	1.18	J	<	0.412	1.03	U
PFOS	1600	<	0.424	1.06	U	<	0.418	1.04	U	0.135	0.476	1.19	J	<	0.444	1.11	U	0.12	0.469	1.17	J	0.326	0.471	1.18	J	1.92	0.412	1.03	
PFPeA	-	<	0.424	1.06	U	<	0.418	1.04	U	<	0.476	1.19	U	<	0.444	1.11	U	0.116	0.469	1.17	J	<	0.471	1.18	U	<	0.412	1.03	U
PFTeDA	-	<	0.424	1.06	U	<	0.418	1.04	U	<	0.476	1.19	U	<	0.444	1.11	U	<	0.469	1.17	U	0.022	0.471	1.18	J	0.013	0.412	1.03	J
PFTrDA	-	<	0.424	1.06	U	<	0.418	1.04	U	<	0.476	1.19	U	<	0.444	1.11	U	<	0.469	1.17	U	<	0.471	1.18	U	<	0.412	1.03	U
PFUnDA	-	<	0.424	1.06	U	<	0.418	1.04	U	<	0.476	1.19	U	<	0.444	1.11	U	<	0.469	1.17	U	<	0.471	1.18	U	<	0.412	1.03	U

Detected concentration exceeded OSD Screening Levels

References

a. Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Calculated. PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFDS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFDS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, P

Interpreted Qualifiers

J = Estimated concentration

U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)

Chemical Abbreviations

6:2 FTS 6:2 fluorotelomer sulfonate 8:2 FTS 8:2 fluorotelomer sulfonate

NEtFOSAA N-ethyl perfluorooctane- sulfonamidoacetic acid NMeFOSAA N-methyl perfluorooctanesulfonamidoacetic acid

PFBA perfluorobutanoic acid PFBS perfluorobutanesulfonic acid PFDA perfluorodecanoic acid PFDoA perfluorododecanoic acid

PFHpA perfluoroheptanoic acid PFHxA perfluorohexanoic acid PFHxS perfluorohexanesulfonic acid PFNA perfluorononanoic acid PFOA perfluorooctanoic acid PFOS perfluorooctanesulfonic acid PFPeA perfluoropentanoic acid PFTeDA perfluorotetradecanoic acid PFTrDA perfluorotridecanoic acid PFUnDA

Acronyms and Abbreviations

AOI Area of Interest DUP Duplicate HA Hand auger HQ Hazard quotient

LCMSMS Liquid Chromatography Mass Spectrometry LOD Limit of Detection

perfluoro-n-undecanoic acid

LOQ Limit of Quantitation OSD Office of the Secretary of Defense QSM Quality Systems Manual

Qual Interpreted Qualifier SB Soil boring

USEPA United States Environmental Protection Agency

ug/Kg micrograms per Kilogram

Not applicable analyte not detected above the LOD

Appendix F-Soil (PFAS) AECOM

	Area of Interest												A	OI02													AOIO	03	
	Sample ID	A	AOI2-H	A6-2-4		AO	12-HA6-	2-4-DU	Р	P	OI2-SE	31-9-11		A	OI2-SB	2-8-10		AO	02-03-	SB-10-	12	AOI02	2-03-SB	-10-12-	DUP	Α	OI3-HA	11-2-4	
	Sample Date		02/12/2	2019			02/12/	2019			05/21/	2019			05/23/2	2019			10/10/	2020			10/10/	2020			02/12/2	2019	
	Depth		2 - 4	l ft			2 - 4	l ft			9 - 1	1 ft			8 - 1	0 ft			10 - 1	2 ft			10 - 1	12 ft			2 - 4	ft	
Analyte	OSD Screening	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
	Level ^a																												
Soil, PFAS by LCMSMS					g/Kg)																								
6:2 FTS	-	0.019	0.442		J	<	0.443		U	<	0.518	1.29	U	0.019	0.413	1.03	J		0.461	1.15	U	<	0.448	1.12	U		0.421	1.05	U
8:2 FTS	-	<	0.442	1.11	U	<	0.443	1.11	U	<	0.518	1.29	U	<	0.413	1.03	U	<	0.461	1.15	U	<	0.448	1.12	U	<	0.421	1.05	U
NEtFOSAA	-	<	0.442	1.11	U	<	0.443	1.11	U	<	0.518	1.29	U	<	0.413	1.03	U	<	0.461	1.15	U	<	0.448	1.12	U	<	0.421	1.05	U
NMeFOSAA	-	<	0.442	1.11	U	<	0.443	1.11	U	<	0.518	1.29	U	<	0.413	1.03	U	<	0.461	1.15	U	<	0.448	1.12	U	<	0.421	1.05	U
PFBA	-	<	0.442	1.11	U	<	0.443	1.11	U	<	0.518	1.29	U	<	0.413	1.03	U	<	0.461	1.15	U	<	0.448	1.12	U	<	0.421	1.05	U
PFBS	1600000	0.036	0.442	1.11	J	0.031	0.443	1.11	J	<	0.518	1.29	U	<	0.413	1.03	U	<	0.461	1.15	U	<	0.448	1.12	U	0.00739	0.421	1.05	J
PFDA	-	<	0.442	1.11	U	0.021	0.443	1.11	J	<	0.518	1.29	U	<	0.413	1.03	U	<	0.461	1.15	U	<	0.448	1.12	U	<	0.421	1.05	U
PFDoA	-	<	0.442	1.11	U	<	0.443	1.11	U	<	0.518	1.29	U	<	0.413	1.03	U	<	0.461	1.15	U	<	0.448	1.12	U	<	0.421	1.05	U
PFHpA	-	0.072	0.442	1.11	J	0.054	0.443	1.11	J	<	0.518	1.29	U	<	0.413	1.03	U	<	0.461	1.15	U	<	0.448	1.12	U	<	0.421	1.05	U
PFHxA	-	0.263	0.442	1.11	J	0.22	0.443	1.11	J	<	0.518	1.29	U	<	0.413	1.03	U	<	0.461	1.15	U	<	0.448	1.12	U	<	0.421	1.05	U
PFHxS	-	0.285	0.442	1.11	J	0.25	0.443	1.11	J	0.012	0.518	1.29	J	0.212	0.413	1.03	J	<	0.461	1.15	U	<	0.448	1.12	U	0.06	0.421	1.05	J
PFNA	-	0.019	0.442	1.11	J	<	0.443	1.11	U	<	0.518	1.29	U	0.00501	0.413	1.03	J	<	0.461	1.15	U	<	0.448	1.12	U	<	0.421	1.05	U
PFOA	1600	0.087	0.442	1.11	J	0.081	0.443	1.11	J	<	0.518	1.29	U	<	0.413	1.03	U	<	0.461	1.15	U	<	0.448	1.12	U	0.034	0.421	1.05	J
PFOS	1600	0.572	0.442	1.11	J	0.489	0.443	1.11	J	0.046	0.518	1.29	J	0.161	0.413	1.03	J	<	0.461	1.15	U	<	0.448	1.12	U	0.244	0.421	1.05	J
PFPeA	-	0.143	0.442	1.11	J	0.093	0.443	1.11	J	<	0.518	1.29	U	<	0.413	1.03	U	<	0.461	1.15	U	<	0.448	1.12	U	<	0.421	1.05	U
PFTeDA	-	<	0.442	1.11	U	<	0.443	1.11	U	<	0.518	1.29	U	<	0.413	1.03	U	<	0.461	1.15	U	<	0.448	1.12	U	<	0.421	1.05	U
PFTrDA	-	<	0.442	1.11	U	<	0.443	1.11	U	<	0.518	1.29	U	<	0.413	1.03	U	<	0.461	1.15	U	<	0.448	1.12	U	<	0.421	1.05	U
PFUnDA	-	<	0.442	1.11	U	<	0.443	1.11	U	<	0.518	1.29	U	<	0.413	1.03	U	<	0.461	1.15	U	<	0.448	1.12	U	<	0.421	1.05	U

Detected concentration exceeded OSD Screening Levels

References

a. Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Calculated. PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFDS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFDS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, P

Interpreted Qualifiers

J = Estimated concentration

U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)

Chemical Abbreviations

6:2 FTS 6:2 fluorotelomer sulfonate 8:2 FTS 8:2 fluorotelomer sulfonate

NEtFOSAA N-ethyl perfluorooctane- sulfonamidoacetic acid NMeFOSAA N-methyl perfluorooctanesulfonamidoacetic acid

PFBA perfluorobutanoic acid PFBS perfluorobutanesulfonic acid PFDA perfluorodecanoic acid PFDoA perfluorododecanoic acid PFHpA perfluoroheptanoic acid PFHxA perfluorohexanoic acid PFHxS perfluorohexanesulfonic acid PFNA perfluorononanoic acid PFOA perfluorooctanoic acid PFOS perfluorooctanesulfonic acid PFPeA perfluoropentanoic acid PFTeDA perfluorotetradecanoic acid

Acronyms and Abbreviations

PFTrDA

PFUnDA

AOI Area of Interest DUP Duplicate HA Hand auger HQ Hazard quotient LCMSMS

Liquid Chromatography Mass Spectrometry LOD Limit of Detection

perfluorotridecanoic acid

perfluoro-n-undecanoic acid

LOQ Limit of Quantitation OSD Office of the Secretary of Defense QSM Quality Systems Manual Qual Interpreted Qualifier Soil boring SB

USEPA United States Environmental Protection Agency

ug/Kg micrograms per Kilogram

Not applicable

	Area of Interest	AOI01								AOI02																			
Sample ID Sample Date		Α	AOI1-HA1-2-4				AOI1-HA2-2-4				AOI2-HA1-2-4				AOI2-HA2-2-4				2-HA2-2	2-4-DUI	AOI2-HA3-2-4				AOI2-HA4-2-4				
		02/12/2019 2 - 4 ft				02/12/2019				02/13/2019 2 - 4 ft				02/13/2019 2 - 4 ft				02/13/2019				02/13/2019				02/13/2019			
	2 - 4 ft						2 - 4	ft										2 - 4 ft				2 - 4 ft							
Analyte	OSD Screening	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
	Level a																												
Soil, PFAS by LCMSMS																													
6:2 FTS	-			1.06	J		0.418	1.04	J		0.476	_	U		0.444	1.11	J		0.448	1.12	U	0.046	*****	1.17	J	0.026	_	1.18	J
8:2 FTS	-	<	0.424	1.06	U	<	0.418	1.04	U	<	0.476	1.19	U	<	0.444	1.11	U	<	0.448	1.12	U	<	0.469	1.17	U	<	0.471	1.18	U
NEtFOSAA	-	0.018	0.424	1.06	J	<	0.418	1.04	U	<	0.476	1.19	U	<	0.444	1.11	U	<	0.448	1.12	U	<	0.469	1.17	U	<	0.471	1.18	U
NMeFOSAA	-	<	0.424	1.06	U	<	0.418	1.04	U	<	0.476	1.19	U	<	0.444	1.11	U	<	0.448	1.12	U	٧	0.469	1.17	U	<	0.471	1.18	U
PFBA	-	<	0.424	1.06	U	<	0.418	1.04	U	<	0.476	1.19	U	<	0.444	1.11	U	0.069	0.448	1.12	J	0.168	0.469	1.17	J	<	0.471	1.18	U
PFBS	1600000	0.00547	0.424	1.06	J	<	0.418	1.04	U	0.0085	0.476	1.19	J	<	0.444	1.11	U	0.00808	0.448	1.12	J	0.027	0.469	1.17	J	<	0.471	1.18	U
PFDA	-	<	0.424	1.06	U	<	0.418	1.04	U	<	0.476	1.19	U	<	0.444	1.11	U	<	0.448	1.12	U	0.015	0.469	1.17	J	<	0.471	1.18	U
PFDoA	-	0.013	0.424	1.06	J	<	0.418	1.04	U	<	0.476	1.19	U	<	0.444	1.11	U	<	0.448	1.12	U	٧	0.469	1.17	U	<	0.471	1.18	U
PFHpA	-	0.01	0.424	1.06	J	<	0.418	1.04	U	<	0.476	1.19	U	<	0.444	1.11	U	0.011	0.448	1.12	J	0.022	0.469	1.17	J	0.054	0.471	1.18	J
PFHxA	-	0.061	0.424	1.06	J	0.035	0.418	1.04	J	<	0.476	1.19	U	0.057	0.444	1.11	J	<	0.448	1.12	U	0.146	0.469	1.17	J	0.141	0.471	1.18	J
PFHxS	-	٧	0.424	1.06	U	<	0.418	1.04	U	0.129	0.476	1.19	J	<	0.444	1.11	U	0.011	0.448	1.12	J	<	0.469	1.17	U	0.091	0.471	1.18	J
PFNA	-	<	0.424	1.06	U	<	0.418	1.04	U	<	0.476	1.19	U	<	0.444	1.11	U	<	0.448	1.12	U	<	0.469	1.17	U	0.037	0.471	1.18	J
PFOA	1600	<	0.424	1.06	U	<	0.418	1.04	U	<	0.476	1.19	U	<	0.444	1.11	U	<	0.448	1.12	U	<	0.469	1.17	U	0.083	0.471	1.18	J
PFOS	1600	<	0.424	1.06	U	<	0.418	1.04	U	0.135	0.476	1.19	J	<	0.444	1.11	U	0.032	0.448	1.12	J	0.12	0.469	1.17	J	0.326	0.471	1.18	J
PFPeA	-	<	0.424	1.06	U	<	0.418	1.04	U	<	0.476	1.19	U	<	0.444	1.11	U	<	0.448	1.12	U	0.116	0.469	1.17	J	<	0.471	1.18	U
PFTeDA	-	<	0.424	1.06	U	<	0.418	1.04	U	<	0.476	1.19	U	<	0.444	1.11	U	<	0.448	1.12	U	<	0.469	1.17	U	0.022	0.471	1.18	J
PFTrDA	-	<	0.424	1.06	U	<	0.418	1.04	U	<	0.476	1.19	U	<	0.444	1.11	U	<	0.448	1.12	U	<	0.469	1.17	U	<	0.471	1.18	U
PFUnDA	-	<	0.424	1.06	U	<	0.418	1.04	U	<	0.476	1.19	U	<	0.444	1.11	U	<	0.448	1.12	U	<	0.469	1.17	U	<	0.471	1.18	U

Detected concentration exceeded OSD Screening Levels

References

a. Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Calculated. PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFDS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFDS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, P

Interpreted Qualifiers

J = Estimated concentration

U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)

Chemical Abbreviations

6:2 FTS 6:2 fluorotelomer sulfonate 8:2 FTS 8:2 fluorotelomer sulfonate

NEtFOSAA N-ethyl perfluorooctane- sulfonamidoacetic acid NMeFOSAA N-methyl perfluorooctanesulfonamidoacetic acid

PFBA perfluorobutanoic acid PFBS perfluorobutanesulfonic acid PFDA perfluorodecanoic acid

PFDoA perfluorododecanoic acid PFHpA perfluoroheptanoic acid PFHxA perfluorohexanoic acid PFHxS perfluorohexanesulfonic acid PFNA perfluorononanoic acid PFOA perfluorooctanoic acid PFOS perfluorooctanesulfonic acid PFPeA perfluoropentanoic acid perfluorotetradecanoic acid PFTeDA PFTrDA perfluorotridecanoic acid PFUnDA perfluoro-n-undecanoic acid

Acronyms and Abbreviations

AOI Area of Interest DUP Duplicate HA Hand auger HQ Hazard quotient

LCMSMS Liquid Chromatography Mass Spectrometry LOD Limit of Detection

LOQ Limit of Quantitation OSD Office of the Secretary of Defense QSM Quality Systems Manual

Qual Interpreted Qualifier SB Soil boring

USEPA United States Environmental Protection Agency

ug/Kg micrograms per Kilogram Not applicable

	Area of Interest														AOI	02													
Sample ID Sample Date		AOI2-HA5-2-4				-	4012-H	46-2-4	AO	12-HA6-	2-4-DU	Р	AOI2-SB1-9-11				Α	OI2-SB	2-8-10		AOI02-03-SB-10-12				AOI02-03-SB-10-12-DUP				
			02/13/2019				02/12/2019				02/12/2019				05/21/2019				05/23/2	2019	10/10/2020 10 - 12 ft				10/10/2020 10 - 12 ft				
	2 - 4 ft				2 - 4 ft				2 - 4 ft				9 - 11 ft					8 - 1) ft										
Analyte	OSD Screening	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
	Level a																												
Soil, PFAS by LCMSMS	Compliant with C				g/Kg)																								
6:2 FTS	-	<	0.412	1.03	U	0.019	0.442	1.11	J	<	0.443	1.11	U	<	0.518	1.29	U	0.019	0.413	1.03	J	<	0.461	1.15	U	<	0.448	1.12	U
8:2 FTS	-	<	0.412	1.03	U	<	0.442	1.11	U	<	0.443	1.11	U	<	0.518	1.29	U	<	0.413	1.03	U	<	0.461	1.15	U	<	0.448	1.12	U
NEtFOSAA	-	<	0.412	1.03	U	<	0.442	1.11	U	<	0.443	1.11	U	<	0.518	1.29	U	<	0.413	1.03	U	<	0.461	1.15	U	<	0.448	1.12	U
NMeFOSAA	-	<	0.412	1.03	U	<	0.442	1.11	U	<	0.443	1.11	U	<	0.518	1.29	U	<	0.413	1.03	U	<	0.461	1.15	U	<	0.448	1.12	U
PFBA	-	<	0.412	1.03	U	<	0.442	1.11	U	<	0.443	1.11	U	<	0.518	1.29	U	<	0.413	1.03	U	<	0.461	1.15	U	<	0.448	1.12	U
PFBS	1600000	0.047	0.412	1.03	J	0.036	0.442	1.11	J	0.031	0.443	1.11	J	<	0.518	1.29	U	<	0.413	1.03	U	<	0.461	1.15	U	<	0.448	1.12	U
PFDA	-	<	0.412	1.03	U	<	0.442	1.11	U	0.021	0.443	1.11	J	<	0.518	1.29	U	<	0.413	1.03	U	<	0.461	1.15	U	<	0.448	1.12	U
PFDoA	-	0.018	0.412	1.03	J	<	0.442	1.11	U	<	0.443	1.11	U	<	0.518	1.29	U	<	0.413	1.03	U	<	0.461	1.15	U	<	0.448	1.12	U
PFHpA	-	<	0.412	1.03	U	0.072	0.442	1.11	J	0.054	0.443	1.11	J	<	0.518	1.29	U	<	0.413	1.03	U	<	0.461	1.15	U	<	0.448	1.12	U
PFHxA	-	0.144	0.412	1.03	J	0.263	0.442	1.11	J	0.22	0.443	1.11	J	<	0.518	1.29	U	<	0.413	1.03	U	<	0.461	1.15	U	<	0.448	1.12	U
PFHxS	-	0.307	0.412	1.03	J	0.285	0.442	1.11	J	0.25	0.443	1.11	J	0.012	0.518	1.29	J	0.212	0.413	1.03	J	<	0.461	1.15	U	<	0.448	1.12	U
PFNA	-	0.043	0.412	1.03	J	0.019	0.442	1.11	J	<	0.443	1.11	U	<	0.518	1.29	U	0.00501	0.413	1.03	J	<	0.461	1.15	U	<	0.448	1.12	U
PFOA	1600	<	0.412	1.03	U	0.087	0.442	1.11	J	0.081	0.443	1.11	J	<	0.518	1.29	U	<	0.413	1.03	U	<	0.461	1.15	U	<	0.448	1.12	U
PFOS	1600	1.92	0.412	1.03		0.572	0.442	1.11	J	0.489	0.443	1.11	J	0.046	0.518	1.29	J	0.161	0.413	1.03	J	<	0.461	1.15	U	<	0.448	1.12	U
PFPeA	-	<	0.412	1.03	U	0.143	0.442	1.11	J	0.093	0.443	1.11	J	<	0.518	1.29	U	<	0.413	1.03	U	<	0.461	1.15	U	<	0.448	1.12	U
PFTeDA	-	0.013	0.412	1.03	J	<	0.442	1.11	U	<	0.443	1.11	U	<	0.518	1.29	U	<	0.413	1.03	U	<	0.461	1.15	U	<	0.448	1.12	U
PFTrDA	-	<	0.412	1.03	U	<	0.442	1.11	U	<	0.443	1.11	U	<	0.518	1.29	U	<	0.413	1.03	U	<	0.461	1.15	U	<	0.448	1.12	U
PFUnDA	-	<	0.412	1.03	U	<	0.442	1.11	U	<	0.443	1.11	U	<	0.518	1.29	U	<	0.413	1.03	U	<	0.461	1.15	U	<	0.448	1.12	U

Detected concentration exceeded OSD Screening Levels

References

a. Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Calculated. PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFDS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFDS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, P

Interpreted Qualifiers

J = Estimated concentration

U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)

Chemical Abbreviations

6:2 FTS 6:2 fluorotelomer sulfonate 8:2 FTS 8:2 fluorotelomer sulfonate

NEtFOSAA N-ethyl perfluorooctane- sulfonamidoacetic acid NMeFOSAA N-methyl perfluorooctanesulfonamidoacetic acid

PFBA perfluorobutanoic acid PFBS perfluorobutanesulfonic acid

PFDA perfluorodecanoic acid PFDoA perfluorododecanoic acid PFHpA perfluoroheptanoic acid PFHxA perfluorohexanoic acid PFHxS perfluorohexanesulfonic acid PFNA perfluorononanoic acid PFOA perfluorooctanoic acid PFOS perfluorooctanesulfonic acid PFPeA perfluoropentanoic acid PFTeDA perfluorotetradecanoic acid PFTrDA perfluorotridecanoic acid PFUnDA perfluoro-n-undecanoic acid

Acronyms and Abbreviations AOI

Area of Interest DUP Duplicate HA Hand auger HQ Hazard quotient

LCMSMS Liquid Chromatography Mass Spectrometry LOD

Limit of Detection LOQ Limit of Quantitation OSD Office of the Secretary of Defense QSM

Quality Systems Manual Qual Interpreted Qualifier SB Soil boring

USEPA United States Environmental Protection Agency

ug/Kg micrograms per Kilogram

Not applicable

	Area of Interest		AOI	03	
	Sample ID	A	AOI3-HA	1-2-4	
	Sample Date		02/12/2	2019	
	Depth		2 - 4		
Analyte	OSD Screening	Result	LOD	LOQ	Qual
	Level a				
Soil, PFAS by LCMSMS	Compliant with C				
6:2 FTS	-	<	0.421	1.05	U
8:2 FTS	-	<	0.421	1.05	U
NEtFOSAA	-	<	0.421	1.05	U
NMeFOSAA	-	<	0.421	1.05	U
PFBA	-	<	0.421	1.05	U
PFBS	1600000	0.00739	0.421	1.05	J
PFDA	-	<	0.421	1.05	U
PFDoA	-	<	0.421	1.05	U
PFHpA	-	<	0.421	1.05	U
PFHxA	-	٧	0.421	1.05	U
PFHxS	-	0.06	0.421	1.05	J
PFNA	-	<	0.421	1.05	U
PFOA	1600	0.034	0.421	1.05	J
PFOS	1600	0.244	0.421	1.05	J
PFPeA	-	<	0.421	1.05	U
PFTeDA	-	<	0.421	1.05	U
PFTrDA	-	<	0.421	1.05	U
PFUnDA	-	<	0.421	1.05	U

Detected concentration exceeded OSD Screening Levels

References

a. Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Salculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Levels Calculated for PFOS, PFOA, PFOA

Interpreted Qualifiers

J = Estimated concentration

U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)

Chemical Abbreviations

6:2 FTS 6:2 fluorotelomer sulfonate 8:2 FTS 8:2 fluorotelomer sulfonate

NEtFOSAA N-ethyl perfluorooctane- sulfonamidoacetic acid

NMeFOSAA N-methyl perfluorooctanesulfonamidoacetic acid

PFBA perfluorobutanoic acid PFBS perfluorobutanesulfonic acid PFDA perfluorodecanoic acid PFDoA perfluorododecanoic acid PFHpA perfluoroheptanoic acid PFHxA perfluorohexanoic acid PFHxS perfluorohexanesulfonic acid PFNA perfluorononanoic acid PFOA perfluorooctanoic acid PFOS perfluorooctanesulfonic acid PFPeA perfluoropentanoic acid PFTeDA perfluorotetradecanoic acid perfluorotridecanoic acid PFTrDA PFUnDA perfluoro-n-undecanoic acid

Acronyms and Abbreviations

AOI Area of Interest DUP Duplicate HA Hand auger HQ Hazard quotient

LCMSMS Liquid Chromatography Mass Spectrometry

LOD Limit of Detection LOQ Limit of Quantitation OSD Office of the Secretary of Defense QSM Quality Systems Manual

Qual Interpreted Qualifier SB Soil boring

USEPA United States Environmental Protection Agency

ug/Kg micrograms per Kilogram

Not applicable

analyte not detected above the LOD

Appendix F-Soil (PFAS) AECOM

	Area of Interest														AOI	01													
	Sample ID	-	AOI1-H	A1-0-2		-	OI1-HA	12-0-2		- /	OI1-SE	31-0-2		-	AOI1-SE	32-0-2		-	A0I1-SB	3-0-2		AO	101-04-	SB-00-0)2	AO	01-05-	SB-00-0)2
	Sample Date		02/12/	2019			02/12/2	2019			02/13/2	2019			02/15/2	2019			02/20/2	2019			10/07/	2020			10/06/2	2020	
	Depth		0 - 2	2 ft			0 - 2	ft.			0 - 2	ft			0 - 2	2 ft			0 - 2	ft			0 - 2	ft.			0 - 2	2 ft	
Analyte	OSD Screening	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
	Level ^a																												
Soil, PFAS by LCMSMS (,								,			
6:2 FTS	-	0.043	0.43	1.08	J	0.043	0.422		Х	<	0.410		U		0.418		U		0.409	-:	U	<			U		0.418		U
8:2 FTS	-	<	0.43	1.08	U	<	0.422	1.05	UX	<	0.410		U		0.418	1.05	U	0.015	0.409	1.02	J	<	0.403	1.01	U		0.418	1.05	U
NEtFOSAA	-	<	0.43	1.08	U	<	0.422	1.05	UX	<		1.02	U		0.418		U		0.409	1.02	J	<		1.01	U		0.418	1.05	U
NMeFOSAA	-	<	0.43	1.08	U	<	0.422	1.05	UX	<	0.410	1.02	U	<	0.418	1.05	U	<	0.409	1.02	U	<	0.403	1.01	U	<	0.418	1.05	U
PFBA	-	<	0.43	1.08	U	<	0.422	1.05	UX	<	0.410	1.02	U	0.305	0.418	1.05	J	<	0.409	1.02	U	<	0.403	1.01	U	<	0.418	1.05	U
PFBS	130000	٧	0.43	1.08	U	<	0.422	1.05	UX	<	0.410	1.02	U	0.104	0.418	1.05	J	0.012	0.409	1.02	J	<	0.403	1.01	U	<	0.418	1.05	U
PFDA	-	٧	0.43	1.08	U	<	0.422	1.05	UX	<	0.410	1.02	U	٧	0.418	1.05	U	<	0.409	1.02	U	<	0.403	1.01	U	<	0.418	1.05	U
PFDoA	-	٧	0.43	1.08	U	<	0.422	1.05	UX	<	0.410	1.02	U	٧	0.418	1.05	U	<	0.409	1.02	U	<	0.403	1.01	U	<	0.418	1.05	U
PFHpA	-	0.015	0.43	1.08	J	<	0.422	1.05	UX	<	0.410	1.02	U	0.163	0.418	1.05	J	0.043	0.409	1.02	J	<	0.403	1.01	U	<	0.418	1.05	U
PFHxA	-	0.197	0.43	1.08	J	0.068	0.422	1.05	Х	0.03	0.410	1.02	J	0.618	0.418	1.05	J	<	0.409	1.02	U	<	0.403	1.01	U	<	0.418	1.05	U
PFHxS	-	<	0.43	1.08	U	<	0.422	1.05	UX	<	0.410	1.02	U	7.97	0.418	1.05		0.103	0.409	1.02	J	<	0.403	1.01	U	<	0.418	1.05	U
PFNA	-	<	0.43	1.08	U	<	0.422	1.05	UX	<	0.410	1.02	U	<	0.418	1.05	U	0.032	0.409	1.02	J	<	0.403	1.01	U	<	0.418	1.05	U
PFOA	130	<	0.43	1.08	U	<	0.422	1.05	UX	<	0.410	1.02	U	<	0.418	1.05	U	0.122	0.409	1.02	J	<	0.403	1.01	U	<	0.418	1.05	U
PFOS	130	<	0.43	1.08	U	<	0.422	1.05	UX	<	0.410	1.02	U	0.751	0.418	1.05	J	0.664	0.409	1.02	J	<	0.403	1.01	U	<	0.418	1.05	U
PFPeA	-	0.102	0.43	1.08	J	<	0.422	1.05	UX	<	0.410	1.02	U	0.364	0.418	1.05	J	0.087	0.409	1.02	J	<	0.403	1.01	U	<	0.418	1.05	U
PFTeDA	-	<	0.43	1.08	U	<	0.422	1.05	UX	<	0.410	1.02	U	<	0.418	1.05	U	0.015	0.409	1.02	J	<	0.403	1.01	U	<	0.418	1.05	U
PFTrDA	-	<	0.43	1.08	U	<	0.422	1.05	UX	<	0.410	1.02	U	<	0.418	1.05	U	0.00995	0.409	1.02	J	<	0.403	1.01	U	<	0.418	1.05	U
PFUnDA	-	<	0.43	1.08	U	<	0.422	1.05	UX	<	0.410	1.02	U	<	0.418	1.05	U	0.013	0.409	1.02	J	<	0.403	1.01	U	<	0.418	1.05	U

Detected concentration exceeded OSD Screening Levels

A Sasistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HQ-0.1.15 October 2019. Soil screening levels based on residential scenario for direct ingestion of contaminated soil.

Interpreted Qualifiers

- J = Estimated concentration
- J+ = Estimated concentration, biased high
- U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)
- UJ = The analyte was not detected at a level greater than or equal to the adjusted DL. However, the reported adjusted DL is approximate and may be inaccurate or imprecise.
- UX/X = The presence or absence of the analyte cannot be substantiated. Acceptance or rejection of the data should be decided by the project team, but exclusion of the data is recommended.

Chemical Abbreviations

6:2 fluorotelomer sulfonate 8:2 FTS 8:2 fluorotelomer sulfonate

NETEOSAA N-ethyl perfluorooctane- sulfonamidoacetic acid

NMeFOSAA N-methyl perfluorooctanesulfonamidoacetic acid PFBA perfluorobutanoic acid

PFBS perfluorobutanesulfonic acid PFDA perfluorodecanoic acid PFDoA perfluorododecanoic acid PFHpA perfluoroheptanoic acid PFHxA perfluorohexanoic acid PFHxS perfluorohexanesulfonic acid PFNA perfluorononanoic acid PFOA perfluorooctanoic acid PFOS perfluorooctanesulfonic acid PFPeA perfluoropentanoic acid PFTeDA perfluorotetradecanoic acid PFTrDA perfluorotridecanoic acid PFUnDA perfluoro-n-undecanoic acid

Acronyms and Abbreviations

AOI Area of Interest DUP Duplicate Hand auger HA HQ Hazard quotient

LCMSMS Liquid Chromatography Mass Spectrometry

LOD Limit of Detection Limit of Quantitation LOQ

OSD Office of the Secretary of Defense

QSM Quality Systems Manual Qual Interpreted Qualifier RE Re-extracted SB Soil boring SS Surface Soil

USEPA United States Environmental Protection Agency

micrograms per Kilogram ug/Kg

Not applicable analyte not detected above the LOD

	Area of Interest														AOI	01													\neg
	Sample ID	AOI	01-06-	SB-00-0)2	-	AOI1-SS	31-0-2		A	DI1-SS	1-0-2R		-	AOI1-S	52-0-2		-	AOI1-SS	33-0-2		AO	I1-SS3-	-0-2 (RE	()	- /	AOI1-SS	64-0-2	
	Sample Date		10/06/2	2020			02/14/2	2019			05/20/2	2019			02/14/	2019			02/14/2	2019			02/14/2	2019			02/14/2	2019	
	Depth		0 - 2	2 ft			0 - 2	ft			0 - 2	ft			0 - 2	2 ft			0 - 2	ft			0 - 2	ft.			0 - 2	ft	
Analyte	OSD Screening	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
	Level ^a																												
Soil, PFAS by LCMSMS	Compliant with				~ ~													,				-	-	-	-				
6:2 FTS	-		0.474		U	<	0.409		U				U	<	0.429	1.07	U		0.425		U	-	-	-	-	<		1.06	UJ
8:2 FTS	-	<	0.474	1.19	U	<	0.409	1.02	U		0.480	1.20	U	<	0.429	1.07	U		0.425	1.06	U	-	-	-	-	<	0.425	1.06	UJ
NEtFOSAA	-	<	0.474	1.19	U	<	0.409	1.02	U			1.20	U	<	0.429	1.07	U		0.425	1.06	U	-	-	-	-	<	0.425	1.06	UJ
NMeFOSAA	-	<	0.474	1.19	U	<	0.409	1.02	U	<	0.480	1.20	U	<	0.429	1.07	U	<	0.425	1.06	U	-	-	-	-	<	0.425	1.06	UJ
PFBA	-	1.42	0.474	1.19		<	0.409	1.02	U	0.051	0.480	1.20	J	<	0.429	1.07	U	<	0.425	1.06	U	-	-	-		0.029	0.425	1.06	J
PFBS	130000	<	0.474	1.19	U	<	0.409	1.02	U	<	0.480	1.20	U	<	0.429	1.07	U	<	0.425	1.06	U	-	-	-		<	0.425	1.06	UJ
PFDA	-	<	0.474	1.19	U	<	0.409	1.02	U	0.021	0.480	1.20	J	<	0.429	1.07	U	-	-	-	-	0.034	0.427	1.07	J	<	0.425	1.06	UJ
PFDoA	-	<	0.474	1.19	U	<	0.409	1.02	U	0.00951	0.480	1.20	J	<	0.429	1.07	U	<	0.425	1.06	U	-	-	-		<	0.425	1.06	UJ
PFHpA	-	<	0.474	1.19	U	<	0.409	1.02	U	0.018	0.480	1.20	J	<	0.429	1.07	U	0.018	0.425	1.06	J	-	-	-		<	0.425	1.06	UJ
PFHxA	-	<	0.474	1.19	U	<	0.409	1.02	U	<	0.480	1.20	U	<	0.429	1.07	U	0.092	0.425	1.06	J	-	-	-	-	0.064	0.425	1.06	J
PFHxS	-	<	0.474	1.19	U	<	0.409	1.02	U	0.011	0.480	1.20	J	<	0.429	1.07	U	0.252	0.425	1.06	J	-	-	-	-	<	0.425	1.06	UJ
PFNA	-	<	0.474	1.19	U	<	0.409	1.02	U	0.066	0.480	1.20	J	<	0.429	1.07	U	0.01	0.425	1.06	J	-	-	-	-	<	0.425	1.06	UJ
PFOA	130	<	0.474	1.19	U	<	0.409	1.02	U	0.069	0.480	1.20	J	<	0.429	1.07	U	0.064	0.425	1.06	J	-	-	-	-	<	0.425	1.06	UJ
PFOS	130	<	0.477	1.19	U	0.082	0.409	1.02	J	0.386	0.480	1.20	J	<	0.429	1.07	U	0.249	0.425	1.06	J	-	-	-	-	<	0.425	1.06	UJ
PFPeA	-	<	0.474	1.19	U	<	0.409	1.02	U	<	0.480	1.20	U	<	0.429	1.07	U	-	-	-	-	0.0099	0.427	1.07	J	<	0.425	1.06	UJ
PFTeDA	-	<	0.474	1.19	U	<	0.409	1.02	U	<	0.480	1.20	U	<	0.429	1.07	U	<	0.425	1.06	U	-	-	-	-	<	0.425	1.06	UJ
PFTrDA	-	<	0.474	1.19	U	<	0.409	1.02	U	<	0.480	1.20	U	<	0.429	1.07	U	<	0.425	1.06	U	-	-	-	-	<	0.425	1.06	UJ
PFUnDA	-	<	0.474	1.19	U	<	0.409		U		0.480		J	<	0.429	1.07	U		0.425	1.06	U	-	-	-	-	<		1.06	UJ

Detected concentration exceeded OSD Screening Levels

A Sasistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HQ-0.1.15 October 2019. Soil screening levels based on residential scenario for direct ingestion of contaminated soil.

Interpreted Qualifiers

- J = Estimated concentration
- J+ = Estimated concentration, biased high
- U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)
- UJ = The analyte was not detected at a level greater than or equal to the adjusted DL. However, the reported adjusted DL is approximate and may be inaccurate or imprecise.
- UX/X = The presence or absence of the analyte cannot be substantiated. Acceptance or rejection of the data should be decided by the project team, but exclusion of the data is recommended.

Chemical Abbreviations

6:2 fluorotelomer sulfonate 8:2 FTS 8:2 fluorotelomer sulfonate

NETEOSAA N-ethyl perfluorooctane- sulfonamidoacetic acid

NMeFOSAA N-methyl perfluorooctanesulfonamidoacetic acid

PFBA perfluorobutanoic acid PFBS perfluorobutanesulfonic acid PFDA perfluorodecanoic acid PFDoA perfluorododecanoic acid PFHpA perfluoroheptanoic acid PFHxA perfluorohexanoic acid PFHxS perfluorohexanesulfonic acid PFNA perfluorononanoic acid

PFOA perfluorooctanoic acid PFOS perfluorooctanesulfonic acid PFPeA perfluoropentanoic acid PFTeDA perfluorotetradecanoic acid

PFTrDA perfluorotridecanoic acid PFUnDA perfluoro-n-undecanoic acid

Acronyms and Abbreviations

AOI Area of Interest DUP Duplicate Hand auger HA HQ Hazard quotient

LCMSMS Liquid Chromatography Mass Spectrometry

LOD Limit of Detection Limit of Quantitation LOQ

OSD Office of the Secretary of Defense

QSM Quality Systems Manual Qual Interpreted Qualifier Re-extracted

RE SB Soil boring SS Surface Soil

USEPA United States Environmental Protection Agency micrograms per Kilogram ug/Kg

Not applicable

analyte not detected above the LOD

	Area of Interest														AOI	01													
	Sample ID	-	AOI1-S	S5-0-2		-	A0I1-SS	6-0-2		AC	0101-SS	7-00-02	2	AC	0101-SS	8-00-0	2	AC	0101-SS	9-00-0	2	AO	101-SS	10-00-0	2	AO	101-SS1	11-00-0)2
	Sample Date		02/14/2	2019			02/20/2	2019			10/07/	2020			10/06/3	2020			10/06/2	2020			10/06/	2020			10/07/2	2020	
	Depth		0 - 2	2 ft			0 - 2	ft			0 - 2	2 ft			0 - 2	? ft			0 - 2	ft			0 - 2	? ft			0 - 2	ft.	
Analyte	OSD Screening	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
	Level ^a																												
Soil, PFAS by LCMSMS	Compliant with	QSM 5.1			ig/Kg																								
6:2 FTS	-	<	0.430	1.07	U	<	0.496	1.24	U	<	0.392	0.980	U	<	0.441	1.10	U	<	0.419	1.05	U	<	0.413	1.03	U	<	0.408	1.02	U
8:2 FTS	-	<	0.430	1.07	U	<	0.496	1.24	U		0.392		U	<	0.441	1.10	U	<	0.419	1.05	U	<	0.413	1.03	U	<	0.408	1.02	U
NEtFOSAA	-	0.014	0.430	1.07	J	<	0.496	1.24	U	<	0.392	0.980	U	<	0.441	1.10	U	<	0.419	1.05	U	<	0.413	1.03	U	<	0.408	1.02	U
NMeFOSAA	-	<	0.430	1.07	U	<	0.496	1.24	U	<	0.392	0.980	U	<	0.441	1.10	U	<	0.419	1.05	U	<	0.413	1.03	U	<	0.408	1.02	U
PFBA	-	<	0.430	1.07	U	<	0.496	1.24	U	<	0.392	0.980	U	<	0.441	1.10	U	<	0.419	1.05	U	<	0.413	1.03	U	0.205	0.408	1.02	J
PFBS	130000	<	0.430	1.07	U	0.010	0.496	1.24	J	<	0.392	0.980	U	<	0.441	1.10	U	<	0.419	1.05	U	<	0.413	1.03	U	1.08	0.408	1.02	
PFDA	-	<	0.430	1.07	U	<	0.496	1.24	U	<	0.392	0.980	U	<	0.441	1.10	U	<	0.419	1.05	U	<	0.413	1.03	U	<	0.408	1.02	U
PFDoA	-	<	0.430	1.07	U	0.016	0.496	1.24	J	<	0.392	0.980	U	<	0.441	1.10	U	<	0.419	1.05	U	<	0.413	1.03	U	<	0.408	1.02	U
PFHpA	-	0.023	0.430	1.07	J	0.026	0.496	1.24	J	<	0.392	0.980	U	<	0.441	1.10	U	<	0.419	1.05	U	<	0.413	1.03	U	<	0.408	1.02	U
PFHxA	-	<	0.430	1.07	U	<	0.496	1.24	U	<	0.392	0.980	U	<	0.441	1.10	U	<	0.419	1.05	U	<	0.413	1.03	U	0.769	0.408	1.02	J
PFHxS	-	0.058	0.430	1.07	J	0.068	0.496	1.24	J	<	0.392	0.980	U	<	0.441	1.10	U	<	0.419	1.05	U	<	0.413	1.03	U	4.38	0.408	1.02	
PFNA	-	0.065	0.430	1.07	J	<	0.496	1.24	U	<	0.392	0.980	U	<	0.441	1.10	U	<	0.419	1.05	U	<	0.413	1.03	U	<	0.408	1.02	U
PFOA	130	0.106	0.430	1.07	J	0.089	0.496	1.24	J	<	0.392	0.980	U	<	0.441	1.10	U	<	0.419	1.05	U	<	0.413	1.03	U	0.166	0.408	1.02	J
PFOS	130	2.23	0.430	1.07		0.822	0.496	1.24	J	0.630	0.392	0.980	J	<	0.441	1.10	U	<	0.419	1.05	U	<	0.413	1.03	U	39.9	2.04	5.11	
PFPeA	-	0.039	0.430	1.07	J	0.043	0.496	1.24	J	<	0.392	0.980	U	<	0.441	1.10	U	<	0.419	1.05	U	<	0.413	1.03	U	0.180	0.408	1.02	J
PFTeDA	-	<	0.430	1.07	U	0.015	0.496	1.24	J	<	0.392	0.980	U	<	0.441	1.10	U	<	0.419	1.05	U	<	0.413	1.03	U	<	0.408	1.02	U
PFTrDA	-	<	0.430	1.07	U	<	0.496	1.24	U	<	0.392	0.980	U	<	0.441	1.10	U	<	0.419	1.05	U	<	0.413	1.03	U	<	0.408	1.02	U
PFUnDA	-	<	0.430	1.07	U	0.018	0.496	1.24	J	<	0.392	0.980	U	<	0.441	1.10	U	<	0.419	1.05	U	<	0.413	1.03	U	<	0.408	1.02	U

Detected concentration exceeded OSD Screening Levels

A Sasistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HQ-0.1.15 October 2019. Soil screening levels based on residential scenario for direct ingestion of contaminated soil.

Interpreted Qualifiers

- J = Estimated concentration
- J+ = Estimated concentration, biased high
- U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)
- UJ = The analyte was not detected at a level greater than or equal to the adjusted DL. However, the reported adjusted DL is approximate and may be inaccurate or imprecise.
- UX/X = The presence or absence of the analyte cannot be substantiated. Acceptance or rejection of the data should be decided by the project team, but exclusion of the data is recommended.

Chemical Abbreviations

6:2 FTS 6:2 fluorotelomer sulfonate 8:2 FTS 8:2 fluorotelomer sulfonate

N-ethyl perfluorooctane- sulfonamidoacetic acid NETEOSAA

NMeFOSAA N-methyl perfluorooctanesulfonamidoacetic acid PFBA perfluorobutanoic acid

PFBS perfluorobutanesulfonic acid PFDA perfluorodecanoic acid PFDoA perfluorododecanoic acid PFHpA perfluoroheptanoic acid PFHxA perfluorohexanoic acid PFHxS perfluorohexanesulfonic acid PFNA perfluorononanoic acid PFOA perfluorooctanoic acid PFOS perfluorooctanesulfonic acid

PFPeA perfluoropentanoic acid PFTeDA perfluorotetradecanoic acid PFTrDA perfluorotridecanoic acid PFUnDA perfluoro-n-undecanoic acid

Acronyms and Abbreviations AOI Area of Interest

DUP Duplicate ft HA Hand auger HQ Hazard quotient

LCMSMS Liquid Chromatography Mass Spectrometry LOD Limit of Detection

Limit of Quantitation LOQ

OSD Office of the Secretary of Defense QSM Quality Systems Manual

Qual Interpreted Qualifier RF Re-extracted SB Soil boring SS Surface Soil

USEPA United States Environmental Protection Agency

micrograms per Kilogram ug/Kg

Not applicable analyte not detected above the LOD

Appendix F-Soil (PFAS) AECOM Page 3 of 8

	Area of Interest								AC	DIO1													AOI	02					\neg
	Sample ID	AO	101-SS	12-00-0	2	AO	101-SS	13-00-0	2	AO	101-SS	14-00-0	12	AO	101-SS	15-00-0)2	Α.	OI2-HA	1-0-2		, A	AOI2-H	A2-0-2			4012-H	A3-0-2	
	Sample Date		10/07/	2020			10/07/2	2020			10/07/	2020			10/07/	2020			02/13/2	2019			02/13/	2019			02/13/	2019	
	Depth		0 - 2	2 ft			0 - 2	ft.			0 - 2	ft			0 - 2	2 ft			0 - 2	ft			0 - 2	2 ft			0 - 2	2 ft	
Analyte	OSD Screening	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qua	I Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
	Level ^a																												
Soil, PFAS by LCMSMS	Compliant with																												
6:2 FTS	-		0.415	_	U	<	0.414		U	<		1.07	U		0.413		U		0.474	1.18	U	0.059	0.436		J	0.044	0.45	1.13	J
8:2 FTS	-	<	0.415	1.04	U	<	0.414	1.03	U	<		1.07	U		0.413	_	U		0.474	1.18	U	<	0.436	1.09	U	<	0.45	1.13	U
NEtFOSAA	-	<	0.415	1.04	U	<	0.414	1.03	U	<		1.07	U		0.413		U		0.474	1.18	U	<	0.436	1.09	U	<	0.45	1.13	U
NMeFOSAA	-	<	0.415	1.04	U	<	0.414	1.03	U	<	0.427	1.07	U	<	0.413	1.03	U	<	0.474	1.18	U	<	0.436	1.09	U	<	0.45	1.13	U
PFBA	-	<	0.415	1.04	U	<	0.414	1.03	U	<	0.427	1.07	U	<	0.413	1.03	U	<	0.474	1.18	U	<	0.436	1.09	U	<	0.45	1.13	U
PFBS	130000	<	0.415	1.04	U	<	0.414	1.03	U	<	0.427	1.07	U	٧	0.413	1.03	U	<	0.474	1.18	U	<	0.436	1.09	U	0.059	0.45	1.13	J
PFDA	-	<	0.415	1.04	U	<	0.414	1.03	U	<	0.427	1.07	U	<	0.413	1.03	U	0.026	0.474	1.18	J	<	0.436	1.09	U	<	0.45	1.13	U
PFDoA	-	<	0.415	1.04	U	<	0.414	1.03	U	<	0.427	1.07	U	٧	0.413	1.03	U	<	0.474	1.18	U	<	0.436	1.09	U	<	0.45	1.13	U
PFHpA	-	<	0.415	1.04	U	<	0.414	1.03	U	<	0.427	1.07	U	٧	0.413	1.03	U	0.018	0.474	1.18	J	<	0.436	1.09	U	0.029	0.45	1.13	J
PFHxA	-	<	0.415	1.04	U	<	0.414	1.03	U	<	0.427	1.07	U	<	0.413	1.03	U	0.066	0.474	1.18	J	0.029	0.436	1.09	J	0.151	0.45	1.13	J
PFHxS	-	<	0.415	1.04	U	<	0.414	1.03	U	<	0.427	1.07	U	<	0.413	1.03	U	0.042	0.474	1.18	J	0.025	0.436	1.09	J	0.118	0.45	1.13	J
PFNA	-	<	0.415	1.04	U	<	0.414	1.03	U	<	0.427	1.07	U	<	0.413	1.03	U	<	0.474	1.18	U	<	0.436	1.09	U	<	0.45	1.13	U
PFOA	130	<	0.415	1.04	U	<	0.414	1.03	U	<	0.427	1.07	U	<	0.413	1.03	U	<	0.474	1.18	U	<	0.436	1.09	U	<	0.45	1.13	U
PFOS	130	<	0.415	1.04	U	2.11	0.414	1.03		0.872	0.427	1.07	J	1.03	0.413	1.03		0.217	0.474	1.18	J	0.086	0.436	1.09	J	0.233	0.45	1.13	J
PFPeA	-	<	0.415	1.04	U	<	0.414	1.03	U	<	0.427	1.07	U	<	0.413	1.03	U	<	0.474	1.18	U	<	0.436	1.09	U	<	0.45	1.13	U
PFTeDA	-	<	0.415	1.04	U	<	0.414	1.03	U	<	0.427	1.07	U	<	0.413	1.03	U	<	0.474	1.18	U	<	0.436	1.09	U	<	0.45	1.13	U
PFTrDA	-	<	0.415	1.04	U	<	0.414	1.03	U	<	0.427	1.07	U	<	0.413	1.03	U	<	0.474	1.18	U	<	0.436	1.09	U	<	0.45	1.13	U
PFUnDA	-	<	0.415	1.04	U	<	0.414	1.03	U	<	0.427	1.07	U	<	0.413	1.03	U	<	0.474	1.18	U	<	0.436	1.09	U	<	0.45	1.13	U

Detected concentration exceeded OSD Screening Levels

A Sasistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HQ-0.1.15 October 2019. Soil screening levels based on residential scenario for direct ingestion of contaminated soil.

Interpreted Qualifiers

- J = Estimated concentration
- J+ = Estimated concentration, biased high
- U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)
- UJ = The analyte was not detected at a level greater than or equal to the adjusted DL. However, the reported adjusted DL is approximate and may be inaccurate or imprecise.
- UX/X = The presence or absence of the analyte cannot be substantiated. Acceptance or rejection of the data should be decided by the project team, but exclusion of the data is recommended.

Chemical Abbreviations

6:2 FTS 6:2 fluorotelomer sulfonate 8:2 FTS 8:2 fluorotelomer sulfonate

N-ethyl perfluorooctane- sulfonamidoacetic acid NETEOSAA

NMeFOSAA N-methyl perfluorooctanesulfonamidoacetic acid

PFBA perfluorobutanoic acid PFBS perfluorobutanesulfonic acid

PFDA perfluorodecanoic acid PFDoA perfluorododecanoic acid PFHpA perfluoroheptanoic acid PFHxA perfluorohexanoic acid PFHxS perfluorohexanesulfonic acid

PFNA perfluorononanoic acid PFOA perfluorooctanoic acid PFOS perfluorooctanesulfonic acid PFPeA perfluoropentanoic acid

PFTeDA perfluorotetradecanoic acid PFTrDA perfluorotridecanoic acid PFUnDA perfluoro-n-undecanoic acid

Acronyms and Abbreviations

AOI Area of Interest DUP Duplicate ft HA Hand auger HQ Hazard quotient

LCMSMS Liquid Chromatography Mass Spectrometry

LOD Limit of Detection Limit of Quantitation LOQ

OSD Office of the Secretary of Defense

QSM Quality Systems Manual Qual Interpreted Qualifier RF Re-extracted SB Soil boring

SS Surface Soil USEPA United States Environmental Protection Agency

micrograms per Kilogram ug/Kg

Not applicable analyte not detected above the LOD

Appendix F-Soil (PFAS) AECOM Page 4 of 8

	Area of Interest														AOI	02													
	Sample ID	-	AOI2-HA	44-0-2		A	OI2-HA	A5-0-2			AOI2-HA	46-0-2		-	AOI2-SE	31-0-2			AOI2-SE	32-0-2		AO	12-SB2-	-0-2-DU	Р	AO	102-03-9	SB-00-0)2
	Sample Date		02/13/2	2019			02/13/2	2019			02/12/2	2019			05/21/2	2019			05/23/2	2019			05/23/2	2019			10/06/2	2020	
	Depth		0 - 2	2 ft			0 - 2	ft.			0 - 2	ft.			0 - 2	2 ft			0 - 2	ft			0 - 2	2 ft			0 - 2	ft	
Analyte	OSD Screening	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual																
	Level ^a																												
Soil, PFAS by LCMSMS	Compliant with 0				~ ~																						,		
6:2 FTS	-	<	0.422		U		0.464		U	<	0.452		U	0.022			J		_	1.05	J	<	0.448	1.12	U	<	0.425		U
8:2 FTS	-	<	_	1.06	U		0.464	1.16	U	<	0.452		U	<	0.500	1.25	U	0.014	0.421	1.05	J	<	0.448	1.12	U	<		1.06	U
NEtFOSAA	-	<	0.422		U		0.464	1.16	U	<	0.452		U	<	0.500	1.25	U	0.013	0.421	1.05	J	<	0.448	1.12	U	<	0.425		U
NMeFOSAA	-	<	0.422		U	<	0.464	1.16	U	<	0.452	1.13	U	<	0.500	1.25	U	<	0.421	1.05	U	<	0.448	1.12	U	<		1.06	U
PFBA	-	<	0.422	1.06	U	<	0.464	1.16	U	<	0.452	1.13	U	0.212	0.500	1.25	J	<	0.421	1.05	U	0.051	0.448	1.12	J	<	0.425	1.06	U
PFBS	130000	٧	0.422	1.06	U	0.057	0.464	1.16	J	0.07	0.452	1.13	J	0.039	0.500	1.25	J	<	0.421	1.05	U	<	0.448	1.12	U	<	0.425	1.06	U
PFDA	-	٧	0.422	1.06	U	0.035	0.464	1.16	J	<	0.452	1.13	U	0.041	0.500	1.25	J	0.08	0.421	1.05	J	<	0.448	1.12	U	<	0.425	1.06	U
PFDoA	-	٧	0.422	1.06	U	0.013	0.464	1.16	J	<	0.452	1.13	U	٧	0.500	1.25	U	0.026	0.421	1.05	J	<	0.448	1.12	U	<	0.425	1.06	U
PFHpA	-	0.02	0.422	1.06	J	0.066	0.464	1.16	J	0.124	0.452	1.13	J	0.145	0.500	1.25	J	0.018	0.421	1.05	J	0.055	0.448	1.12	J	<	0.425	1.06	U
PFHxA	-	0.053	0.422	1.06	J	0.179	0.464	1.16	J	0.351	0.452	1.13	J	0.392	0.500	1.25	J	<	0.421	1.05	U	0.096	0.448	1.12	J	<	0.425	1.06	U
PFHxS	-	0.05	0.422	1.06	J	0.628	0.464	1.16	J	2.27	0.452	1.13		0.684	0.500	1.25	J	0.131	0.421	1.05	J	0.289	0.448	1.12	J	<	0.425	1.06	U
PFNA	-	0.013	0.422	1.06	J	<	0.464	1.16	U	0.074	0.452	1.13	J	0.084	0.500	1.25	J	0.035	0.421	1.05	J	0.141	0.448	1.12	J	<	0.425	1.06	U
PFOA	130	0.042	0.422	1.06	J	0.126	0.464	1.16	J	0.265	0.452	1.13	J	0.271	0.500	1.25	J	0.042	0.421	1.05	J	0.135	0.448	1.12	J	<	0.425	1.06	U
PFOS	130	0.407	0.422	1.06	J	1.73	0.464	1.16		10.9	0.452	1.13		4.14	0.500	1.25		4.31	0.421	1.05	J	22	0.448	1.12	J	0.602	0.425	1.06	J
PFPeA	-	<	0.422	1.06	U	<	0.464	1.16	U	0.154	0.452	1.13	J	0.228	0.500	1.25	J	<	0.421	1.05	U	<	0.448	1.12	U	<	0.425	1.06	U
PFTeDA	-	<	0.422	1.06	U	0.016	0.464	1.16	J	<	0.452	1.13	U	<	0.500	1.25	U	0.014	0.421	1.05	J	<	0.448	1.12	U	<	0.425	1.06	U
PFTrDA	-	<	0.422	1.06	U		0.464	1.16	U	<	0.452	1.13	U	<	0.500	1.25	U	<	0.421	1.05	U	<	0.448	1.12	U	<		1.06	U
PFUnDA	-	<	0.422	1.06	U	<	0.464	1.16	U	<	0.452	1.13	U	0.015	0.500	1.25	J	0.022	0.421	1.05	J	<	0.448	1.12	U	<	0.425	1.06	U

Detected concentration exceeded OSD Screening Levels

a. Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 15 October 2019. Soil screening levels based on residential scenario for direct ingestion of contaminated soil.

Interpreted Qualifiers

- J = Estimated concentration
- J+ = Estimated concentration, biased high
- U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)
- UJ = The analyte was not detected at a level greater than or equal to the adjusted DL. However, the reported adjusted DL is approximate and may be inaccurate or imprecise.
- UX/X = The presence or absence of the analyte cannot be substantiated. Acceptance or rejection of the data should be decided by the project team, but exclusion of the data is recommended.

Chemical Abbreviations

6:2 FTS 6:2 fluorotelomer sulfonate 8:2 FTS 8:2 fluorotelomer sulfonate

N-ethyl perfluorooctane- sulfonamidoacetic acid NETEOSAA NMeFOSAA N-methyl perfluorooctanesulfonamidoacetic acid

PFBA perfluorobutanoic acid

PFBS perfluorobutanesulfonic acid PFDA perfluorodecanoic acid PFDoA perfluorododecanoic acid PFHpA perfluoroheptanoic acid PFHxA perfluorohexanoic acid PFHxS perfluorohexanesulfonic acid PFNA perfluorononanoic acid PFOA perfluorooctanoic acid PFOS perfluorooctanesulfonic acid PFPeA perfluoropentanoic acid PFTeDA perfluorotetradecanoic acid PFTrDA perfluorotridecanoic acid PFUnDA perfluoro-n-undecanoic acid

Acronyms and Abbreviations

AOI	Area or interest
DUP	Duplicate
ft	feet
HA	Hand auger
HQ	Hazard quotient

LCMSMS Liquid Chromatography Mass Spectrometry LOD Limit of Detection

Limit of Quantitation LOQ

OSD Office of the Secretary of Defense QSM Quality Systems Manual

Qual Interpreted Qualifier RF Re-extracted SB Soil boring SS Surface Soil

USEPA United States Environmental Protection Agency micrograms per Kilogram

ug/Kg Not applicable

analyte not detected above the LOD

Appendix F-Soil (PFAS) AECOM Page 5 of 8

	Area of Interest														AOI)2													
	Sample ID	AOI02	-03-SB	-00-02-	-DUP	P	OI2-SS	1-0-2		Α	OI2-SS	2-0-2		AOI	2-SS2-	0-2-DU	Р	Α.	OI2-SS	3-0-2			AOI2-SS	64-0-2		A	OI2-SS	5-0-2	
	Sample Date		10/06/	2020			05/20/2	2019			05/20/2	019			05/20/2	2019			05/20/2	2019			05/20/2	2019			05/20/2	2019	
	Depth		0 - 2	2 ft			0 - 2	ft			0 - 2	ft			0 - 2	ft			0 - 2	ft			0 - 2	ft			0 - 2	ft	
Analyte	OSD Screening	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qua	Result	LOD	LOQ	Qual
	Level a			_																									
Soil, PFAS by LCMSM	S Compliant with																												4
6:2 FTS	-		0.412		U		0.471	_	U		0.462		J				U		0.430	_	U	<	0.456	1.14	U				U
8:2 FTS	-		0.412		U	0.033	0.471	1.18	J	<	0.462		U		0.455		U		0.430	1.07	U	<	0.456	1.14	U		0.423	1.06	U
NEtFOSAA	-		0.412		U	<	0.471	1.18	U	<	0.462		U			1.14	U		0.430		U	<	0.456	1.14	U	0.00995		1.06	J
NMeFOSAA	-		0.412		U	<	0.471	1.18	U	0.029	0.462	1.15	J		0.455	1.14	U		0.430	1.07	U	<	0.456	1.14	U		0.423	1.06	U
PFBA	-	<	0.412	1.03	U	0.215	0.471	1.18	J	<	0.462	1.15	U	<	0.455	1.14	U	0.071	0.430	1.07	J	<	0.456	1.14	U	<	0.423	1.06	U
PFBS	130000	<	0.412	1.03	U	0.03	0.471	1.18	J	<	0.462	1.15	U	<	0.455	1.14	U	0.00705		1.07	J	<	0.456	1.14	U	<	0.423	1.06	U
PFDA	-	<	0.412	1.03	U	<	0.471	1.18	U	<	0.462	1.15	U	0.024	0.455	1.14	J	0.012	0.430	1.07	J	0.03	0.456	1.14	J	<	0.423	1.06	U
PFDoA	-	<	0.412	1.03	U	0.00614	0.471	1.18	J	<	0.462	1.15	U	<	0.455	1.14	U	<	0.430	1.07	U	<	0.456	1.14	U	<	0.423	1.06	U
PFHpA	-	<	0.412	1.03	U	0.085	0.471	1.18	J	0.012	0.462	1.15	J	0.00955	0.455	1.14	J	0.013	0.430	1.07	J	<	0.456	1.14	U	0.021	0.423	1.06	J
PFHxA	-	<	0.412	1.03	U	<	0.471	1.18	U	<	0.462	1.15	U	<	0.455	1.14	U	<	0.430	1.07	U	<	0.456	1.14	U	<	0.423	1.06	U
PFHxS	-	<	0.412	1.03	U	0.193	0.471	1.18	J	0.025	0.462	1.15	J	0.038	0.455	1.14	J	0.032	0.430	1.07	J	0.069	0.456	1.14	J	0.062	0.423	1.06	J
PFNA	-	<	0.412	1.03	U	0.074	0.471	1.18	J	0.03	0.462	1.15	J	0.025	0.455	1.14	J	<	0.430	1.07	U	0.048	0.456	1.14	J	0.048	0.423	1.06	J
PFOA	130	<	0.412	1.03	U	0.132	0.471	1.18	J	<	0.462	1.15	U	0.055	0.455	1.14	J	<	0.430	1.07	U	0.098	0.456	1.14	J	0.08	0.423	1.06	J
PFOS	130	0.807	0.412	1.03	J	2.22	0.471	1.18		0.893	0.462	1.15	J	0.758	0.455	1.14	J	0.181	0.430	1.07	J	1.09	0.456	1.14	J+	0.679	0.423	1.06	J
PFPeA	-	<	0.412	1.03	U	0.421	0.471	1.18	J	<	0.462	1.15	U	<	0.455	1.14	U	0.14	0.430	1.07	J	<	0.456	1.14	U	<	0.423	1.06	U
PFTeDA	-	<	0.412	1.03	U	<	0.471	1.18	U	<	0.462	1.15	U	<	0.455	1.14	U	<	0.430	1.07	U	<	0.456	1.14	U	<	0.423	1.06	U
PFTrDA	-	<	0.412	1.03	U	<	0.471	1.18	U	<	0.462	1.15	U	<	0.455	1.14	U	<	0.430	1.07	U	<	0.456	1.14	U	<	0.423	1.06	U
PFUnDA	-	<	0.412	1.03	U	<	0.471	1.18	U	0.00894	0.462	1.15	J	<	0.455	1.14	U	<	0.430	1.07	U	<	0.456	1.14	U	<	0.423	1.06	U

Detected concentration exceeded OSD Screening Levels

A Sasistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HQ-0.1.15 October 2019. Soil screening levels based on residential scenario for direct ingestion of contaminated soil.

Interpreted Qualifiers

- J = Estimated concentration
- J+ = Estimated concentration, biased high
- U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)
- UJ = The analyte was not detected at a level greater than or equal to the adjusted DL. However, the reported adjusted DL is approximate and may be inaccurate or imprecise.
- UX/X = The presence or absence of the analyte cannot be substantiated. Acceptance or rejection of the data should be decided by the project team, but exclusion of the data is recommended.

Chemical Abbreviations

6:2 FTS 6:2 fluorotelomer sulfonate 8:2 FTS 8:2 fluorotelomer sulfonate

N-ethyl perfluorooctane- sulfonamidoacetic acid NEtFOSAA NMeFOSAA N-methyl perfluorooctanesulfonamidoacetic acid

PFBA perfluorobutanoic acid

PFBS perfluorobutanesulfonic acid PEDA perfluorodecanoic acid PFDoA perfluorododecanoic acid PFHpA PFHxA perfluorohexanoic acid PFHxS perfluorohexanesulfonic acid PFNA perfluorononanoic acid PFOA perfluorooctanoic acid PFOS perfluorooctanesulfonic acid PFPeA perfluoropentanoic acid PFTeDA perfluorotetradecanoic acid PFTrDA perfluorotridecanoic acid

Acronyms and Abbreviations

PFUnDA

AOI Area of Interest DUP Duplicate HA Hand auger HQ Hazard quotient

LCMSMS Liquid Chromatography Mass Spectrometry

perfluoro-n-undecanoic acid

LOD Limit of Detection

Limit of Quantitation LOQ OSD

Office of the Secretary of Defense QSM Quality Systems Manual Qual Interpreted Qualifier

RF Re-extracted SB Soil boring SS Surface Soil

USEPA United States Environmental Protection Agency

micrograms per Kilogram ug/Kg

Not applicable analyte not detected above the LOD

Α	rea of Interest						AOI)2													AC	0103							
	Sample ID	AC)102-SS	6-00-0	2	AC	102-SS	7-00-0	2	AC	DI02-SS	8-00-0	2	,	AOI3-H	A1-0-2		-	AOI3-SE	31-0-2		AO	103-02-9	SB-00-0)2	AC	0103-SS	1-00-0	2
	Sample Date		10/06/2	2020			10/06/2	2020			10/06/2	2020			02/12/	2019			05/22/2	2019			10/06/2	2020			10/07/	2020	
	Depth		0 - 2	2 ft			0 - 2	ft			0 - 2	ft.			0 - 2	2 ft			0 - 2	ft			0 - 2	ft.			0 - 2	2 ft	
Analyte	OSD Screening	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
	Level ^a																												Ш.
Soil, PFAS by LCMSMS C	ompliant with				ıg/Kg																								
6:2 FTS	-		0.434	1.08	U		0.435	1.09	U		0.425		U	0.021	0.427		J		0.552	1.38	U	<			U		0.441	1.10	U
8:2 FTS	-	<	0.434	1.08	U	<	0.435	1.09	U	<	0.425	1.06	U	<	0.427	1.07	U	0.103	0.552	1.38	J	<	0.433	1.08	U	<	0.441	1.10	U
NEtFOSAA	-	<	0.434	1.08	U	<	0.435	1.09	U	<	0.425	1.06	U	<	0.427	1.07	U	<	0.552	1.38	U	<	0.433	1.08	U	<	0.441	1.10	U
NMeFOSAA	-	<	0.434	1.08	U	<	0.435	1.09	U	<	0.425	1.06	U	<	0.427	1.07	U	<	0.552	1.38	U	<	0.433	1.08	U	<	0.441	1.10	U
PFBA	-	٧	0.434	1.08	U	<	0.435	1.09	U	<	0.425	1.06	U	<	0.427	1.07	U	0.181	0.552	1.38	J	<	0.433	1.08	U	<	0.441	1.10	U
PFBS	130000	<	0.434	1.08	U	<	0.435	1.09	U	<	0.425	1.06	U	0.178	0.427	1.07	J	0.103	0.552	1.38	J	<	0.433	1.08	U	<	0.441	1.10	U
PFDA	-	<	0.434	1.08	U	<	0.435	1.09	U	<	0.425	1.06	U	<	0.427	1.07	U	0.024	0.552	1.38	J	<	0.433	1.08	U	<	0.441	1.10	U
PFDoA	-	<	0.434	1.08	U	<	0.435	1.09	U	<	0.425	1.06	U	<	0.427	1.07	U	<	0.552	1.38	U	<	0.433	1.08	U	<	0.441	1.10	U
PFHpA	-	<	0.434	1.08	U	<	0.435	1.09	U	<	0.425	1.06	U	0.04	0.427	1.07	J	0.698	0.552	1.38	J	<	0.433	1.08	U	<	0.441	1.10	U
PFHxA	-	0.165	0.434	1.08	J	0.282	0.435	1.09	J	<	0.425	1.06	U	1.05	0.427	1.07	J	0.792	0.552	1.38	J	<	0.433	1.08	U	<	0.441	1.10	U
PFHxS	-	0.213	0.434	1.08	J	0.259	0.435	1.09	J	0.274	0.425	1.06	J	0.345	0.427	1.07	J	5.02	0.552	1.38		<	0.433	1.08	U	<	0.441	1.10	U
PFNA	-	<	0.434	1.08	U	<	0.435	1.09	U	<	0.425	1.06	U	<	0.427	1.07	U	0.110	0.552	1.38	J	<	0.433	1.08	U	<	0.441	1.10	U
PFOA	130	<	0.434	1.08	U	<	0.435	1.09	U	<	0.425	1.06	U	0.043	0.427	1.07	J	0.473	0.552	1.38	J	<	0.433	1.08	U	<	0.441	1.10	U
PFOS	130	0.678	0.434	1.08	J	<	0.435	1.09	U	0.617	0.425	1.06	J	0.308	0.427	1.07	J	12.3	0.552	1.38		<	0.433	1.08	U	<	0.441	1.10	U
PFPeA	-	<	0.434	1.08	U	<	0.435	1.09	U	<	0.425	1.06	U	1.3	0.427	1.07		0.248	0.552	1.38	J	<	0.433	1.08	U	<	0.441	1.10	U
PFTeDA	-	<	0.434	1.08	U		0.435	1.09	U	<	0.425	1.06	U	0.012	0.427	1.07	J	<	0.552	1.38	U	<	0.433	1.08	U	<	0.441	1.10	U
PFTrDA	-	<	0.434	1.08	Ü		0.435	1.09	Ü		0.425		Ü	<	0.427	1.07	Ü	<	0.552	1.38	Ü	<		1.08	Ü		0.441	1.10	Ū
PFUnDA	_		0.434	1.08	U		0.435	1.09	Ü		0.425		U	<	0.427	1.07	Ü		0.552	1.38	U	<		1.08	U	<	0.441	1.10	Ü

Detected concentration exceeded OSD Screening Levels

A Sasistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HQ-0.1.15 October 2019. Soil screening levels based on residential scenario for direct ingestion of contaminated soil.

Interpreted Qualifiers

- J = Estimated concentration
- J+ = Estimated concentration, biased high
- U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)
- UJ = The analyte was not detected at a level greater than or equal to the adjusted DL. However, the reported adjusted DL is approximate and may be inaccurate or imprecise.
- UX/X = The presence or absence of the analyte cannot be substantiated. Acceptance or rejection of the data should be decided by the project team, but exclusion of the data is recommended.

Chemical Abbreviations

6:2 FTS 6:2 fluorotelomer sulfonate 8:2 FTS 8:2 fluorotelomer sulfonate

N-ethyl perfluorooctane- sulfonamidoacetic acid NETEOSAA

NMeFOSAA N-methyl perfluorooctanesulfonamidoacetic acid

PFBA perfluorobutanoic acid PFBS perfluorobutanesulfonic acid PFDA perfluorodecanoic acid

PFDoA perfluorododecanoic acid PFHpA perfluoroheptanoic acid PFHxA perfluorohexanoic acid

PFHxS perfluorohexanesulfonic acid PFNA perfluorononanoic acid PFOA perfluorooctanoic acid PFOS perfluorooctanesulfonic acid

PFPeA perfluoropentanoic acid PFTeDA perfluorotetradecanoic acid PFTrDA perfluorotridecanoic acid

PFUnDA perfluoro-n-undecanoic acid

Acronyms and Abbreviations

AOI Area of Interest DUP Duplicate ft HA Hand auger HQ Hazard quotient

LCMSMS Liquid Chromatography Mass Spectrometry

LOD Limit of Detection Limit of Quantitation LOQ

OSD Office of the Secretary of Defense

QSM Quality Systems Manual Qual Interpreted Qualifier RF Re-extracted SB Soil boring SS Surface Soil

USEPA United States Environmental Protection Agency

micrograms per Kilogram ug/Kg Not applicable

analyte not detected above the LOD

	Area of Interest										AOI	03									\neg
	Sample ID	AC)103-SS	2-00-02	2	AC	0103-SS	3-00-02	2	AC	DI03-SS		2	AOI0	3-SS4-(00-02-D	UP	AC	0103-SS	5-00-0	2
	Sample Date		10/07/	2020			10/07/2	2020			10/07/2	2020			10/07/	2020			10/07/	2020	
	Depth		0 - 2	2 ft			0 - 2	ft.			0 - 2	2 ft			0 - 2	2 ft			0 - 2	ft.	
Analyte	OSD Screening	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
	Level ^a																				
Soil, PFAS by LCMSM	S Compliant with																				
6:2 FTS	-	<	0.392	0.980	U	<	0.420	1.05	U	<	0.436	1.09	U	<	0.454	1.13	U	<	0.460	1.15	U
8:2 FTS	-			0.980	U	<	0.420	1.05	U	<	0.436	1.09	U	<	0.454	1.13	U	<	0.460		U
NEtFOSAA	-	<	0.392	0.980	U	<	0.420	1.05	U	<	0.436	1.09	U	<	0.454	1.13	U	<	0.460	1.15	U
NMeFOSAA	-	<	0.392	0.980	U	<	0.420	1.05	U	<	0.436	1.09	U	<	0.454	1.13	U	<	0.460	1.15	U
PFBA	-	٧	0.392	0.980	U	<	0.420	1.05	U	<	0.436	1.09	U	<	0.454	1.13	U	<	0.460	1.15	U
PFBS	130000	<	0.392	0.980	U	<	0.420	1.05	U	<	0.436	1.09	U	<	0.454	1.13	U	<	0.460	1.15	U
PFDA	-	<	0.392	0.980	U	<	0.420	1.05	U	<	0.436	1.09	U	<	0.454	1.13	U	<	0.460	1.15	U
PFDoA	-	<	0.392	0.980	U	<	0.420	1.05	U	<	0.436	1.09	U	<	0.454	1.13	U	<	0.460	1.15	U
PFHpA	-	٧	0.392	0.980	U	<	0.420	1.05	U	<	0.436	1.09	U	<	0.454	1.13	U	<	0.460	1.15	U
PFHxA	-	<	0.392	0.980	U	<	0.420	1.05	U	<	0.436	1.09	U	<	0.454	1.13	U	<	0.460	1.15	U
PFHxS	-	<	0.392	0.980	U	0.278	0.420	1.05	J	<	0.436	1.09	U	<	0.454	1.13	U	<	0.460	1.15	U
PFNA	-	<	0.392	0.980	U	<	0.420	1.05	U	<	0.436	1.09	U	<	0.454	1.13	U	<	0.460	1.15	U
PFOA	130	<	0.392	0.980	U	<	0.420	1.05	U	<	0.436	1.09	U	<	0.454	1.13	U	<	0.460	1.15	U
PFOS	130	0.438	0.392	0.980	J	2.91	0.420	1.05		0.764	0.436	1.09	J	0.936	0.454	1.13	J	0.215	0.460	1.15	J
PFPeA	-	<	0.392	0.980	U	<	0.420	1.05	U	<	0.436	1.09	U	<	0.454	1.13	U	<	0.460	1.15	U
PFTeDA	-	<	0.392	0.980	U	<	0.420	1.05	U	<	0.436	1.09	U	<	0.454	1.13	U	<	0.460	1.15	U
PFTrDA	-	<	0.392	0.980	U	<	0.420	1.05	U	<	0.436	1.09	U	<	0.454	1.13	U	<	0.460	1.15	U
PFUnDA	-	<	0.392	0.980	U	<	0.420	1.05	U	<	0.436	1.09	U	<	0.454	1.13	U	<	0.460	1.15	U

Detected concentration exceeded OSD Screening Levels

A Sasistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HQ-0.1.15 October 2019. Soil screening levels based on residential scenario for direct ingestion of contaminated soil.

Interpreted Qualifiers

- J = Estimated concentration
- J+ = Estimated concentration, biased high
- U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)
- UJ = The analyte was not detected at a level greater than or equal to the adjusted DL. However, the reported adjusted DL is approximate and may be inaccurate or imprecise.
- UX/X = The presence or absence of the analyte cannot be substantiated. Acceptance or rejection of the data should be decided by the project team, but exclusion of the data is recommended.

Chemical Abbreviations

6:2 FTS	6:2 fluorotelomer sulfonate
8-2 ETS	8:2 fluorotelomer culfonate

NEtFOSAA N-ethyl perfluorooctane- sulfonamidoacetic acid NMeFOSAA N-methyl perfluorooctanesulfonamidoacetic acid

PFBA perfluorobutanoic acid

PFBS perfluorobutanesulfonic acid PFDA perfluorodecanoic acid PFDoA perfluorododecanoic acid PFHpA perfluoroheptanoic acid PFHxA perfluorohexanoic acid PFHxS perfluorohexanesulfonic acid PFNA perfluorononanoic acid PFOA perfluorooctanoic acid PFOS perfluorooctanesulfonic acid PFPeA perfluoropentanoic acid

PFTeDA perfluorotetradecanoic acid PFTrDA perfluorotridecanoic acid

PFUnDA perfluoro-n-undecanoic acid

Acronyms and Abbreviations

AOI Area of Interest DUP Duplicate ft HA Hand auger HQ Hazard quotient

LCMSMS Liquid Chromatography Mass Spectrometry

LOD Limit of Detection Limit of Quantitation LOQ

OSD Office of the Secretary of Defense QSM Quality Systems Manual Qual Interpreted Qualifier

RF Re-extracted SB Soil boring SS Surface Soil

USEPA United States Environmental Protection Agency ug/Kg micrograms per Kilogram

Not applicable

analyte not detected above the LOD

Appendix F-Soil (PFAS) AECOM Page 8 of 8

	Area of Interest														AOI	01													\neg
	Sample ID		AOI1-	MW1		A	OI1-MV	V1-GW			AOI1-I	MW2		A		V2-DUP	,	Α	OI1-MV	V2-GW			AOI1-	MW3		А	OI1-M	W3-GW	$\overline{}$
	Sample Date		05/28/	/2019			10/11/	2020			05/29/	2019			05/29/	2019			10/12/	2020			05/25/	2019			10/10	/2020	
Analyte	OSD Screening Level	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
Water, PFAS by LCMSM	S Compliant with	QSM 5.1	Table	B-15 (r	ng/L)																								
6:2 FTS	-	<	2.00	5.00	U	<	4.00	10.0	U	<	3.57	8.93	U	<	3.57	8.93	U	<	4.00	10.0	U	3.24	3.33	8.33	J	<	4.00	10.0	U
8:2 FTS	-	<	2.00	5.00	U	<	4.00	10.0	U	<	3.57	8.93	U	<	3.57	8.93	U	<	4.00	10.0	U	<	3.33	8.33	U	<	4.00	10.0	U
NEtFOSAA	-	<	4.00	5.00	U	<	8.00	10.0	U	<	7.14	8.93	U	<	7.14	8.93	U	<	8.00	10.0	U	<	6.67	8.33	U	<	8.00	10.0	U
NMeFOSAA	-	<	4.00	5.00	U	<	8.00	10.0	U	<	7.14	8.93	U	<	7.14	8.93	U	<	8.00	10.0	U	<	6.67	8.33	U	<	8.00	10.0	U
PFBA	-	4.52	2.00	5.00	J	<	4.00	10.0	U	8.34	3.57	8.93	J	9.18	3.57	8.93		17.2	4.00	10.0		30.2	3.33	8.33		25.9	4.00	10.0	\Box
PFBS	40000	3.16	2.00	5.00	J	3.00	4.00	10.0	J	4.52	3.57	8.93	J	4.74	3.57	8.93	J	11.2	4.00	10.0		34.1	3.33	8.33		23.1	4.00	10.0	
PFDA	-	<	2.00	5.00	UJ	<	4.00	10.0	U	<	3.57	8.93	U	<	3.57	8.93	U	<	4.00	10.0	U	<	3.33	8.33	UJ	<	4.00	10.0	U
PFDoA	-	<	2.00	5.00	U	<	4.00	10.0	U	<	3.57	8.93	U	<	3.57	8.93	U	<	4.00	10.0	U	<	3.33	8.33	U	<	4.00	10.0	U
PFHpA	-	1.83	2.00	5.00	J	<	4.00	10.0	U	4.00	3.57	8.93	J	3.84	3.57	8.93	J	4.90	4.00	10.0	J	22.4	3.33	8.33		23.0	4.00	10.0	
PFHxA	-	7.81	2.00	5.00		4.32	4.00	10.0	J	15.2	3.57	8.93		15.2	3.57	8.93		33.4	4.00	10.0		80.9	3.33	8.33		72.6	4.00	10.0	
PFHxS	-	22.3	2.00	5.00		21.0	4.00	10.0		33.9	3.57	8.93		34.3	3.57	8.93		18.0	4.00	10.0		213	3.33	8.33		184	4.00	10.0	J+
PFNA	-	<	2.00	5.00	U	<	4.00	10.0	U	<	3.57	8.93	U	<	3.57	8.93	U	<	4.00	10.0	U	<	3.33	8.33	U	<	4.00	10.0	U
PFOA	40	1.17	2.00	5.00	J	2.10	4.00	10.0	J	4.58	3.57	8.93	J	4.43	3.57	8.93	J	2.75	4.00	10.0	J	12.4	3.33	8.33	J+	13.5	4.00	10.0	
PFOS	40	8.82	2.00	5.00		5.53	4.00	10.0	J	29.2	3.57	8.93		27.3	3.57	8.93		25.4	4.00	10.0		24.8	3.33	8.33		62.2	4.00	10.0	
PFPeA	-	9.46	2.00	5.00		4.68	4.00	10.0	J	16.7	3.57	8.93		16.7	3.57	8.93		47.3	4.00	10.0		103	3.33	8.33		78.6	4.00	10.0	
PFTeDA	-	<	2.00	5.00	U	<	4.00	10.0	U	<	3.57	8.93	U	<	3.57	8.93	U	<	4.00	10.0	U	<	3.33	8.33	U	<	4.00	10.0	U
PFTrDA	-	<	2.00	5.00	U	<	4.00	10.0	U	<	3.57	8.93	U	<	3.57	8.93	U	<	4.00	10.0	U	<	3.33	8.33	U	<	4.00	10.0	U
PFUnDA	-	<	2.00	5.00	U	<	4.00	10.0	U	<	3.57	8.93	U	<	3.57	8.93	U	<	4.00	10.0	U	<	3.33	8.33	U	<	4.00	10.0	U

Detected concentration exceeded OSD Screening Levels

References
a. Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 15 October 2019. Groundwater screening levels based on residential scenario for direct ingestion of groundwater.

Interpreted Qualifiers

- J = Estimated concentration
- J- = Estimated concentration, biased low
- J+ = Estimated concentration, biased high
- U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)
- UJ = The analyte was not detected at a level greater than or equal to the adjusted DL. However, the reported adjusted DL is approximate and may be inaccurate or imprecise.

Chemical Abbre	viations
6:2 FTS	6:2 fluorotelomer sulfonate
8:2 FTS	8:2 fluorotelomer sulfonate
NEtFOSAA	N-ethyl perfluorooctane- sulfonamidoacetic acid
NMeFOSAA	N-methyl perfluorooctanesulfonamidoacetic acid
PFBA	perfluorobutanoic acid
PFBS	perfluorobutanesulfonic acid
PFDA	perfluorodecanoic acid
PFDoA	perfluorododecanoic acid
PFHpA	perfluoroheptanoic acid
PFHxA	perfluorohexanoic acid
PFHxS	perfluorohexanesulfonic acid
PFNA	perfluorononanoic acid
PFOA	perfluorooctanoic acid
PFOS	perfluorooctanesulfonic acid
PFPeA	perfluoropentanoic acid
PFTeDA	perfluorotetradecanoic acid
PFTrDA	perfluorotridecanoic acid
PFUnDA	perfluoro-n-undecanoic acid

Acronyms and Abbreviations

AOI	Area of Interest
DUP	Duplicate
GW	Groundwater
HQ	Hazard quotient
LCMSMS	Liquid Chromatography Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
OSD	Office of the Secretary of Defense
QSM	Quality Systems Manual
Qual	Interpreted Qualifier
USEPA	United States Environmental Protection Agency
ng/L	nanogram per liter
-	Not applicable
<	analyte not detected above the LOD

Appendix F-Groundwater AECOM Page 1 of 6

	Area of Interest														AOI	101													
	Sample ID	AOI	1-MW3	-GW-DI	JP	AC	0101-M\	N04-GV	٧	AC	IO1-MV	V05-GV	٧	AC	0101-M\	N06-GW	/		BH-	02		E	3H-02-1	01020			FH-	-02	
	Sample Date		10/10/	2020			10/14/	2020			10/12/2	2020			10/13/	2020			05/28/	2019			10/10/	2020			05/28/	2019	
Analyte	OSD Screening Level	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
Water, PFAS by LCMSM	S Compliant with	QSM 5.1	Table	B-15 (r	ıg/L)																								
6:2 FTS	-	<	4.00	10.0	U	<	4.00	10.0	U	<	4.00	10.0	U	<	4.00	10.0	U	<	2.00	5.00	U	<	4.00	10.0	U	<	2.00	5.00	U
8:2 FTS	-	٧	4.00	10.0	U	<	4.00	10.0	U	<	4.00	10.0	U	<	4.00	10.0	U	<	2.00	5.00	U	<	4.00	10.0	U	<	2.00	5.00	U
NEtFOSAA	-	٧	8.00	10.0	U	<	8.00	10.0	U	<	8.00	10.0	U	<	8.00	10.0	U	<	4.00	5.00	U	<	8.00	10.0	U	<	4.00	5.00	U
NMeFOSAA	-	٧	8.00	10.0	U	<	8.00	10.0	U	<	8.00	10.0	U	<	8.00	10.0	U	<	4.00	5.00	U	<	8.00	10.0	U	<	4.00	5.00	U
PFBA	-	27.1	4.00	10.0		2.90	4.00	10.0	J	18.4	4.00	10.0		11.6	4.00	10.0		6.30	2.00	5.00		4.02	4.00	10.0	J	7.59	2.00	5.00	
PFBS	40000	25.8	4.00	10.0		3.24	4.00	10.0	J	21.7	4.00	10.0		14.7	4.00	10.0		1.66	2.00	5.00	J	<	4.00	10.0	U	2.65	2.00	5.00	J
PFDA	-	<	4.00	10.0	U	<	4.00	10.0	U	<	4.00	10.0	U	<	4.00	10.0	U	1.74	2.00	5.00	J	<	4.00	10.0	U	<	2.00	5.00	U
PFDoA	-	<	4.00	10.0	U	<	4.00	10.0	U	<	4.00	10.0	U	<	4.00	10.0	U	<	2.00	5.00	U	<	4.00	10.0	U	<	2.00	5.00	U
PFHpA	-	23.8	4.00	10.0		<	4.00	10.0	U	11.5	4.00	10.0		15.7	4.00	10.0		2.69	2.00	5.00	J	<	4.00	10.0	U	3.97	2.00	5.00	J
PFHxA	-	84.2	4.00	10.0		5.05	4.00	10.0	J	53.3	4.00	10.0		25.2	4.00	10.0		10.2	2.00	5.00		7.25	4.00	10.0	J	13.8	2.00	5.00	
PFHxS	-	197	4.00	10.0	J+	12.2	4.00	10.0		77.0	4.00	10.0		114	4.00	10.0		5.06	2.00	5.00		4.89	4.00	10.0	J	16.7	2.00	5.00	
PFNA	-	<	4.00	10.0	U	<	4.00	10.0	U	<	4.00	10.0	U	1.71	4.00	10.0	J	0.861	2.00	5.00	J	<	4.00	10.0	U	<	2.00	5.00	U
PFOA	40	14.3	4.00	10.0		2.34	4.00	10.0	J	8.19	4.00	10.0	J	9.16	4.00	10.0	J	4.68	2.00	5.00	J+	<	4.00	10.0	U	7.31	2.00	5.00	J+
PFOS	40	61.6	4.00	10.0		5.26	4.00	10.0	J	34.4	4.00	10.0		34.2	4.00	10.0		6.88	2.00	5.00		2.61	4.00	10.0	J	9.25	2.00	5.00	
PFPeA	-	88.6	4.00	10.0		6.51	4.00	10.0	J	56.5	4.00	10.0		21.6	4.00	10.0		10.2	2.00	5.00		7.30	4.00	10.0	J	16.5	2.00	5.00	
PFTeDA	-	<	4.00	10.0	U	<	4.00	10.0	U	<	4.00	10.0	U	<	4.00	10.0	U	<	2.00	5.00	U	<	4.00	10.0	U	<	2.00	5.00	U
PFTrDA	-	<	4.00	10.0	U	<	4.00	10.0	U	<	4.00	10.0	U	<	4.00	10.0	U	<	2.00	5.00	U	<	4.00	10.0	U	<	2.00	5.00	U
PFUnDA	-	<	4.00	10.0	U	<	4.00	10.0	U	<	4.00	10.0	U	<	4.00	10.0	U	<	2.00	5.00	U	<	4.00	10.0	U	<	2.00	5.00	U

Detected concentration exceeded OSD Screening Levels

References
a. Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 15 October 2019. Groundwater screening levels based on residential scenario for direct ingestion of groundwater.

Interpreted Qualifiers

- J = Estimated concentration
- J- = Estimated concentration, biased low
- J+ = Estimated concentration, biased high
- U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)
- UJ = The analyte was not detected at a level greater than or equal to the adjusted DL. However, the reported adjusted DL is approximate and may be inaccurate or imprecise.

Chemical Abbreviations

Chemical Appreviat	IOTIS
6:2 FTS	6:2 fluorotelomer sulfonate
8:2 FTS	8:2 fluorotelomer sulfonate
NEtFOSAA	N-ethyl perfluorooctane- sulfonamidoacetic acid
NMeFOSAA	N-methyl perfluorooctanesulfonamidoacetic acid
PFBA	perfluorobutanoic acid
PFBS	perfluorobutanesulfonic acid
PFDA	perfluorodecanoic acid
PFDoA	perfluorododecanoic acid
PFHpA	perfluoroheptanoic acid
PFHxA	perfluorohexanoic acid
PFHxS	perfluorohexanesulfonic acid
PFNA	perfluorononanoic acid
PFOA	perfluorooctanoic acid
PFOS	perfluorooctanesulfonic acid
PFPeA	perfluoropentanoic acid
PFTeDA	perfluorotetradecanoic acid
PFTrDA	perfluorotridecanoic acid

perfluoro-n-undecanoic acid

Acronyms and Abbreviations Area of Interest

PFUnDA

AOI	Area of interest
DUP	Duplicate
GW	Groundwater
HQ	Hazard quotient
LCMSMS	Liquid Chromatography Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
OSD	Office of the Secretary of Defense
QSM	Quality Systems Manual
Qual	Interpreted Qualifier
USEPA	United States Environmental Protection Agency
ng/L	nanogram per liter
-	Not applicable
<	analyte not detected above the LOD

Appendix F-Groundwater AECOM Page 2 of 6

	Area of Interest		AC	0101													AOI	02											
	Sample ID	F	-H-02-	101120		FH	-02-101	120 (RE	Ξ)		AOI2-I	MW1		Α	OI2-M\	W1-GW		AOI	2-MW1-	-GW-DI	JP		AOI2-	MW2		Α	OI2-MV	V2-GW	
	Sample Date		10/11/	2020			10/11/2	2020			05/29/	2019			10/12/	2020			10/12/	2020			05/30/	/2019			10/13/	2020	
Analyte	OSD Screening Level	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
Water, PFAS by LCMSM	S Compliant with	QSM 5.1	Table	B-15 (r	ng/L)																								
6:2 FTS	-	<	4.00	10.0	U	-	-	-	-	<	3.33	8.33	U	<	4.81	10.0	U	<	6.38	10.0	U	<	3.57	8.93	U	<	4.00	10.0	U
8:2 FTS	-	<	4.00	10.0	U	-	-	-	-	<	3.33	8.33	U	<	4.00	10.0	U	<	4.00	10.0	U	<	3.57	8.93	U	<	4.00	10.0	U
NEtFOSAA	-	<	8.00	10.0	U	-	-	-	-	<	6.67	8.33	U	<	8.00	10.0	U	<	8.00	10.0	U	<	7.14	8.93	U	<	8.00	10.0	U
NMeFOSAA	-	<	8.00	10.0	U	-	-	-	-	<	6.67	8.33	U	<	8.00	10.0	U	<	8.00	10.0	U	<	7.14	8.93	U	<	8.00	10.0	U
PFBA	-	-	-	-	-	6.42	4.00	10.0	J	36.2	3.33	8.33		41.6	4.00	10.0		43.2	4.00	10.0		3.74	3.57	8.93	J	<	4.00	10.0	U
PFBS	40000	2.06	4.00	10.0	J	-	-	-	-	27.3	3.33	8.33		16.5	4.00	10.0		17.5	4.00	10.0		1.36	3.57	8.93	J	<	4.00	10.0	U
PFDA	-	<	4.00	10.0	U	-	-	-	-	<	3.33	8.33	U	<	4.00	10.0	U	<	4.00	10.0	U	<	3.57	8.93	U	<	4.00	10.0	U
PFDoA	-	<	4.00	10.0	U	-	-	-	-	<	3.33	8.33	U	<	4.00	10.0	U	<	4.00	10.0	U	<	3.57	8.93	U	<	4.00	10.0	U
PFHpA	-	3.90	4.00	10.0	J	-	-	-	-	19.0	3.33	8.33		21.8	4.00	10.0		23.0	4.00	10.0		<	3.57	8.93	U	<	4.00	10.0	U
PFHxA	-	11.6	4.00	10.0		-	-	-	-	102	3.33	8.33	J-	108	4.00	10.0		109	4.00	10.0		3.03	3.57	8.93	J	<	4.00	10.0	U
PFHxS	-	20.4	4.00	10.0		-	-	-	-	155	3.33	8.33	J-	154	4.00	10.0		153	4.00	10.0		27.6	3.57	8.93		1.86	4.00	10.0	J
PFNA	-	<	4.00	10.0	U	-	-	-	-	1.86	3.33	8.33	J	<	4.00	10.0	U	<	4.00	10.0	U	<	3.57	8.93	U	<	4.00	10.0	U
PFOA	40	7.25	4.00	10.0	J	-	-	-	-	10.7	3.33	8.33	J+	12.6	4.00	10.0		14.6	4.00	10.0		3.07	3.57	8.93	J+	<	4.00	10.0	U
PFOS	40	8.74	4.00	10.0	J	-	-	-	-	118	3.33	8.33		89.4	4.00	10.0		110	4.00	10.0		9.14	3.57	8.93		4.67	4.00	10.0	J
PFPeA	-	13.1	4.00	10.0		-	-	-	-		3.33	8.33		151	4.00	10.0		153	4.00	10.0		<	3.57	8.93	U	<	4.00	10.0	U
PFTeDA	-	<	4.00	10.0	U	-	-	-	-	<	3.33	8.33	U	<	4.00	10.0	U	<	4.00	10.0	U	<	3.57	8.93	U	<	4.00	10.0	U
PFTrDA	-	<	4.00	10.0	U	-	-	-	-	<	3.33	8.33	U	<	4.00	10.0	U	<	4.00	10.0	U	<	3.57	8.93	U	<	4.00	10.0	U
PFUnDA	-	<	4.00	10.0	U	-	-	-	-	<	3.33	8.33	U	<	4.00	10.0	U	<	4.00	10.0	U	<	3.57	8.93	U	<	4.00	10.0	U

Detected concentration exceeded OSD Screening Levels

References
a. Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 15 October 2019. Groundwater screening levels based on residential scenario for direct ingestion of groundwater.

Interpreted Qualifiers

- J = Estimated concentration
- J- = Estimated concentration, biased low
- J+ = Estimated concentration, biased high
- U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)
- UJ = The analyte was not detected at a level greater than or equal to the adjusted DL. However, the reported adjusted DL is approximate and may be inaccurate or imprecise.

Chemical Abbreviat	tions
6:2 FTS	6:2 fluorotelomer sulfonate
8:2 FTS	8:2 fluorotelomer sulfonate
NEtFOSAA	N-ethyl perfluorooctane- sulfonamidoacetic acid
NMeFOSAA	N-methyl perfluorooctanesulfonamidoacetic acid
PFBA	perfluorobutanoic acid
PFBS	perfluorobutanesulfonic acid
PFDA	perfluorodecanoic acid
PFDoA	perfluorododecanoic acid
PFHpA	perfluoroheptanoic acid
PFHxA	perfluorohexanoic acid
PFHxS	perfluorohexanesulfonic acid
PFNA	perfluorononanoic acid
PFOA	perfluorooctanoic acid
PFOS	perfluorooctanesulfonic acid
PFPeA	perfluoropentanoic acid
PFTeDA	perfluorotetradecanoic acid
PFTrDA	perfluorotridecanoic acid
PFUnDA	perfluoro-n-undecanoic acid

Acronyms and Abbreviations

AOI	Area or interest
DUP	Duplicate
GW	Groundwater
HQ	Hazard quotient
LCMSMS	Liquid Chromatography Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
OSD	Office of the Secretary of Defense
QSM	Quality Systems Manual
Qual	Interpreted Qualifier
USEPA	United States Environmental Protection Agency
ng/L	nanogram per liter
-	Not applicable
<	analyte not detected above the LOD

Appendix F-Groundwater AECOM Page 3 of 6

	Area of Interest												AC	0102													AO	103	
	Sample ID	AC	0102-M\	N03-GV	Ν		MW-	-06			MW-06	-DUP			MW-	-07			MW-	-08		N	/W-11-	100920			AOI3-	MW1	
	Sample Date		10/14/	2020			05/29/	2019			05/29/	2019			05/30/	2019			05/29/	2019			10/09/	2020			05/29	/2019	
Analyte	OSD Screening Level	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
Water, PFAS by LCMSN	MS Compliant with	QSM 5.1	Table	B-15 (ng/L)																								
6:2 FTS	-	<	4.56	10.0	U	<	3.57	8.93	U	<	3.33	8.33	U	<	3.57	8.93	U	<	3.33	8.33	U	<	4.00	10.0	U	<	3.33	8.33	U
8:2 FTS	-	<	4.00	10.0	U	<	3.57	8.93	U	<	3.33	8.33	U	<	3.57	8.93	U	<	3.33	8.33	U	<	4.00	10.0	U	<	3.33	8.33	U
NEtFOSAA	-	<	8.00	10.0	U	<	7.14	8.93	U	<	6.67	8.33	U	<	7.14	8.93	U	<	6.67	8.33	U	<	8.00	10.0	U	<	6.67	8.33	U
NMeFOSAA	-	<	8.00	10.0	U	<	7.14	8.93	U	<	6.67	8.33	U	<	7.14	8.93	U	<	6.67	8.33	U	<	8.00	10.0	U	<	6.67	8.33	U
PFBA	-	39.2	4.00	10.0		10.4	3.57	8.93		<	3.33	8.33	U	<	3.57	8.93	U	45.3	3.33	8.33		2.23	4.00	10.0	J	14.8	3.33	8.33	
PFBS	40000	17.2	4.00	10.0		<	3.57	8.93	U	<	3.33	8.33	U	<	3.57	8.93	U	20.9	3.33	8.33		<	4.00	10.0	U	59.2	3.33	8.33	
PFDA	-	<	4.00	10.0	U	<	3.57	8.93	U	<	3.33	8.33	U	<	3.57	8.93	U	<	3.33	8.33	U	<	4.00	10.0	U	<	3.33	8.33	U
PFDoA	-	<	4.00	10.0	U	<	3.57	8.93	U	<	3.33	8.33	U	<	3.57	8.93	U	<	3.33	8.33	U	<	4.00	10.0	U	<	3.33	8.33	U
PFHpA	-	24.6	4.00	10.0		<	3.57	8.93	U	<	3.33	8.33	U	<	3.57	8.93	U	20.6	3.33	8.33		<	4.00	10.0	U	1.60	3.33	8.33	J
PFHxA	-	87.2	4.00	10.0		<	3.57	8.93	U	1.82	3.33	8.33	J	1.74	3.57	8.93	J	112	3.33	8.33		2.71	4.00	10.0	J	48.7	3.33	8.33	
PFHxS	-	113	4.00	10.0		1.99	3.57	8.93	J	<	3.33	8.33	U	2.17	3.57	8.93	J	69.9	3.33	8.33		<	4.00	10.0	U	5.66	3.33	8.33	J
PFNA	-	<	4.00	10.0	U	<	3.57	8.93	U		3.33	8.33	U	<	3.57	8.93	U	<	3.33	8.33	U	<	4.00	10.0	U	<	3.33	8.33	U
PFOA	40	10.0	4.00	10.0		<	3.57	8.93	U		3.33	8.33	U	<	3.57	8.93	U	10.8	3.33	8.33	J+	<	4.00	10.0	U	<	3.33	8.33	U
PFOS	40	6.29	4.00	10.0	J	1.83	3.57	8.93	J	<	3.33	8.33	U	<	3.57	8.93	U	8.74	3.33	8.33		<	4.00	10.0	U	1.63	3.33	8.33	J
PFPeA	-	152	4.00	10.0		<	3.57	8.93	U		3.33	8.33	U	<	3.57	8.93	U	171	3.33	8.33		<	4.00	10.0	U	15.4	3.33	8.33	
PFTeDA	-	<	4.00	10.0	U	<	3.57	8.93	U		3.33	8.33	U	<	3.57	8.93	U	<	3.33	8.33	U	<	4.00	10.0	U	<	3.33	8.33	U
PFTrDA	-	<	4.00	10.0	U	<	3.57	8.93	U	<	3.33	8.33	U	<	3.57	8.93	U	<	3.33	8.33	U	<	4.00	10.0	U	<	3.33	8.33	U
PFUnDA	-	<	4.00	10.0	U	<	3.57	8.93	U	<	3.33	8.33	U	<	3.57	8.93	U	<	3.33	8.33	U	<	4.00	10.0	U	<	3.33	8.33	U

Detected concentration exceeded OSD Screening Levels

References
a. Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 15 October 2019. Groundwater screening levels based on residential scenario for direct ingestion of groundwater.

Interpreted Qualifiers

- J = Estimated concentration
- J- = Estimated concentration, biased low
- J+ = Estimated concentration, biased high
- U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)
- UJ = The analyte was not detected at a level greater than or equal to the adjusted DL. However, the reported adjusted DL is approximate and may be inaccurate or imprecise.

Chemical Abbreviat	tions
6:2 FTS	6:2 fluorotelomer sulfonate
8:2 FTS	8:2 fluorotelomer sulfonate
NEtFOSAA	N-ethyl perfluorooctane- sulfonamidoacetic acid
NMeFOSAA	N-methyl perfluorooctanesulfonamidoacetic acid
PFBA	perfluorobutanoic acid
PFBS	perfluorobutanesulfonic acid
PFDA	perfluorodecanoic acid
PFDoA	perfluorododecanoic acid
PFHpA	perfluoroheptanoic acid
PFHxA	perfluorohexanoic acid
PFHxS	perfluorohexanesulfonic acid
PFNA	perfluorononanoic acid
PFOA	perfluorooctanoic acid
PFOS	perfluorooctanesulfonic acid
PFPeA	perfluoropentanoic acid
PFTeDA	perfluorotetradecanoic acid
PFTrDA	perfluorotridecanoic acid
PFUnDA	perfluoro-n-undecanoic acid

Acronyms and Abbreviations

AUI	Area or interest
DUP	Duplicate
GW	Groundwater
HQ	Hazard quotient
LCMSMS	Liquid Chromatography Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
OSD	Office of the Secretary of Defense
QSM	Quality Systems Manual
Qual	Interpreted Qualifier
USEPA	United States Environmental Protection Agency
ng/L	nanogram per liter
-	Not applicable
<	analyte not detected above the LOD

Appendix F-Groundwater AECOM Page 4 of 6

	Area of Interest												AOI	103															
	Sample ID	A	OI3-M\	N1-GW		AC	0103-MV	V02-GV	٧	N.	1W-08-	101120			MW	-10			MW	-11			OBTM	IW-01			PH	i-1	
	Sample Date		10/09/	2020			10/13/	2020			10/11/	2020			05/29/	2019			05/30/	2019			05/30	/2019			05/30/	/2019	
Analyte	OSD Screening Level	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual	Result	LOD	LOQ	Qual
Water, PFAS by LCMSN	S Compliant with	QSM 5.1	Table	B-15 (r	ng/L)																								
6:2 FTS	-	<	4.00	10.0	U	<	4.00	10.0	U	<	4.00	10.0	U	<	2.00	5.00	U	<	2.00	5.00	U	<	2.00	5.00	U	<	3.33	8.33	U
8:2 FTS	-	<	4.00	10.0	U	<	4.00	10.0	U	<	4.00	10.0	U	<	2.00	5.00	U	<	2.00	5.00	U	<	2.00	5.00	U	<	3.33	8.33	U
NEtFOSAA	-	<	8.00	10.0	U	<	8.00	10.0	U	<	8.00	10.0	U	<	4.00	5.00	U	<	4.00	5.00	U	<	4.00	5.00	U	<	6.67	8.33	U
NMeFOSAA	-	<	8.00	10.0	U	<	8.00	10.0	U	<	8.00	10.0	U	<	4.00	5.00	U	<	4.00	5.00	U	<	4.00	5.00	U	<	6.67	8.33	U
PFBA	-	4.84	4.00	10.0	J	<	4.00	10.0	U	45.8	4.00	10.0		3.38	2.00	5.00	J	5.03	2.00	5.00		5.32	2.00	5.00		<	3.33	8.33	U
PFBS	40000	18.5	4.00	10.0		2.07	4.00	10.0	J	14.6	4.00	10.0		<	2.00	5.00	U	<	2.00	5.00	U	<	2.00	5.00	U	<	3.33	8.33	U
PFDA	-	<	4.00	10.0	U	<	4.00	10.0	U	<	4.00	10.0	U	<	2.00	5.00	U	<	2.00	5.00	U	<	2.00	5.00	U	<	3.33	8.33	U
PFDoA	-	<	4.00	10.0	U	<	4.00	10.0	U	<	4.00	10.0	U	<	2.00	5.00	U	<	2.00	5.00	U	<	2.00	5.00	U	<	3.33	8.33	U
PFHpA	-	<	4.00	10.0	U	<	4.00	10.0	U	25.3	4.00	10.0		2.47	2.00	5.00	J	<	2.00	5.00	U	<	2.00	5.00	U	<	3.33	8.33	U
PFHxA	-	16.8	4.00	10.0		2.40	4.00	10.0	J	116	4.00	10.0		3.52	2.00	5.00	J	5.11	2.00	5.00		1.36	2.00	5.00	J	<	3.33	8.33	U
PFHxS	-	3.91	4.00	10.0	J	5.86	4.00	10.0	J	88.3	4.00	10.0		2.66	2.00	5.00	J	2.27	2.00	5.00	J	0.955	2.00	5.00	J	<	3.33	8.33	U
PFNA	-	<	4.00	10.0	U	<	4.00	10.0	U	<	4.00	10.0	U	<	2.00	5.00	U	<	2.00	5.00	U	<	2.00	5.00	U	<	3.33	8.33	U
PFOA	40	<	4.00	10.0	U	<	4.00	10.0	U	12.8	4.00	10.0		1.71	2.00	5.00	J+	<	2.00	5.00	U	<	2.00	5.00	U	<	3.33	8.33	U
PFOS	40	2.28	4.00	10.0	J	2.32	4.00	10.0	J	8.50	4.00	10.0	J	<	2.00	5.00	U	<	2.00	5.00	U	1.10	2.00	5.00	J	<	3.33	8.33	U
PFPeA	-	5.85	4.00	10.0	J	<	4.00	10.0	U	178	4.00	10.0		4.65	2.00	5.00	J	6.49	2.00	5.00		<	2.00	5.00	U	<	3.33	8.33	U
PFTeDA	-	<	4.00	10.0	U	<	4.00	10.0	U	<	4.00	10.0	U	<	2.00	5.00	U	<	2.00	5.00	U	<	2.00	5.00	U	<	3.33	8.33	U
PFTrDA	-	<	4.00	10.0	U	<	4.00	10.0	U	<	4.00	10.0	U	<	2.00	5.00	U	<	2.00	5.00	U	<	2.00	5.00	U	<	3.33	8.33	U
PFUnDA	-	<	4.00	10.0	U	<	4.00	10.0	U	<	4.00	10.0	U	<	2.00	5.00	U	<	2.00	5.00	U	<	2.00	5.00	U	<	3.33	8.33	U

Detected concentration exceeded OSD Screening Levels

References
a. Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 15 October 2019. Groundwater screening levels based on residential scenario for direct ingestion of groundwater.

Interpreted Qualifiers

- J = Estimated concentration
- J- = Estimated concentration, biased low
- J+ = Estimated concentration, biased high
- U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)
- UJ = The analyte was not detected at a level greater than or equal to the adjusted DL. However, the reported adjusted DL is approximate and may be inaccurate or imprecise.

Chemical Abbreviations		
6:2 FTS	6:2 fluorotelomer sulfonate	
8:2 FTS	8:2 fluorotelomer sulfonate	
NEtFOSAA	N-ethyl perfluorooctane- sulfonamidoacetic acid	
NMeFOSAA	N-methyl perfluorooctanesulfonamidoacetic acid	
PFBA	perfluorobutanoic acid	
PFBS	perfluorobutanesulfonic acid	
PFDA	perfluorodecanoic acid	
PFDoA	perfluorododecanoic acid	
PFHpA	perfluoroheptanoic acid	
PFHxA	perfluorohexanoic acid	
PFHxS	perfluorohexanesulfonic acid	
PFNA	perfluorononanoic acid	
PFOA	perfluorooctanoic acid	
PFOS	perfluorooctanesulfonic acid	
PFPeA	perfluoropentanoic acid	
PFTeDA	perfluorotetradecanoic acid	
PFTrDA	perfluorotridecanoic acid	
PFUnDA	nerfluoro-n-undecanoic acid	

Acronyms and Abbreviations Area of Interest

AOI	Area or interest
DUP	Duplicate
GW	Groundwater
HQ	Hazard quotient
LCMSMS	Liquid Chromatography Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
OSD	Office of the Secretary of Defense
QSM	Quality Systems Manual
Qual	Interpreted Qualifier
USEPA	United States Environmental Protection Agency
ng/L	nanogram per liter
-	Not applicable
<	analyte not detected above the LOD

Appendix F-Groundwater AECOM Page 5 of 6

	Area of Interest		AOI		
	PH-2				
	05/30/2019				
Analyte	OSD Screening Level	Result	LOD	LOQ	Qual
	a				
Water, PFAS by LCMSN	IS Compliant with	QSM 5.1			_J /L)
6:2 FTS	-	<	3.33	8.33	U
8:2 FTS	-	<	3.33	8.33	U
NEtFOSAA	-	<	6.67	8.33	U
NMeFOSAA	-	<	6.67	8.33	U
PFBA	-	<	3.33	8.33	U
PFBS	40000	<	3.33	8.33	U
PFDA	-	<	3.33	8.33	U
PFDoA	-	<	3.33	8.33	U
PFHpA	-	<	3.33	8.33	U
PFHxA	-	<	3.33	8.33	U
PFHxS	-	<	3.33	8.33	U
PFNA	-	<	3.33	8.33	U
PFOA	40	<	3.33	8.33	U
PFOS	40	<	3.33	8.33	U
PFPeA	-	<	3.33	8.33	U
PFTeDA	-	<	3.33	8.33	U
PFTrDA	-	<	3.33	8.33	U
PFUnDA	-	<	3.33	8.33	U

Detected concentration exceeded OSD Screening Levels

References

a. Assistant Secretary of Defense, 2019. Risk Based Screening Levels Calculated for PFOS, PFOA, PFBS in Groundwater or Soil using USEPA's Regional Screening Level Calculator. HQ=0.1. 15 October 2019. Groundwater screening levels based on residential scenario for direct ingestion of groundwater.

Interpreted Qualifiers

- J = Estimated concentration
- J- = Estimated concentration, biased low
- J+ = Estimated concentration, biased high
- U = The analyte was not detected at a level greater than or equal to the adjusted detection limit (DL)
- UJ = The analyte was not detected at a level greater than or equal to the adjusted DL. However, the reported adjusted DL is approximate and may be inaccurate or imprecise.

Chemical Abbreviations

6:2 FTS	6:2 fluorotelomer sulfonate
8:2 FTS	8:2 fluorotelomer sulfonate

NEtFOSAA N-ethyl perfluorooctane- sulfonamidoacetic acid N-methyl perfluorooctanesulfonamidoacetic acid NMeFOSAA

PFBA perfluorobutanoic acid PFBS perfluorobutanesulfonic acid PFDA perfluorodecanoic acid PFDoA perfluorododecanoic acid PFHpA perfluoroheptanoic acid PFHxA perfluorohexanoic acid PFHxS perfluorohexanesulfonic acid perfluorononanoic acid PFOA perfluorooctanoic acid PFOS perfluorooctanesulfonic acid PFPeA perfluoropentanoic acid

PFTeDA perfluorotetradecanoic acid perfluorotridecanoic acid PFUnDA perfluoro-n-undecanoic acid

Acronyms and Abbreviations

AOI Area of Interest DUP Duplicate GW Groundwater HQ Hazard quotient

LCMSMS Liquid Chromatography Mass Spectrometry LOD Limit of Detection

LOQ Limit of Quantitation OSD Office of the Secretary of Defense

QSM Quality Systems Manual Qual Interpreted Qualifier

USEPA United States Environmental Protection Agency nanogram per liter

ng/L

Not applicable

analyte not detected above the LOD

Appendix F-Groundwater AECOM Page 6 of 6

Appendix G Laboratory Reports

Site Inspection Report Fort William Henry Harrison, MT

THIS PAGE INTENTIONALLY BLANK

Site Inspection Report Fort William Henry Harrison, MT

THIS PAGE INTENTIONALLY BLANK